
'\

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, inc AFRL-SR AR TR
sources gathering and maintaining the data needed, and completing and reviewing the collection of info
other aspect of this collection of infomiation. including suggestions for reducing this burden, to Washingt OHs^
and Reports, 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202^(302, a< 3 to th% Office 01

0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT
DATE

30-JUN-04

3. REPORT TYPE AND DATES COVERED

Final Report 2001 - 2004

TITLE AND SUBTITLE

Real-Time Complex Systems

6. AUTHOR(S)

Steve Vestal
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Labs
3660 Technology Drive
Minneapolis, MN 55418

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research
801 North Randolph Street
Arlington, VA, 22203 ^^ ^/^

5. FUNDING NUMBERS

F49620-01-C-0024

8 PERFORMING ORGANBIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTAL NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

f^ipprovecl for public release,
Histribuiion unlimited

/ipprc)vecl for' public releas-
r(i-rhih

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)

We developed modified linear hybrid automata models for complex real-time tasks, e.g. tasks that have complex
uiirnal behaviors may interact or synchronize in complex ways, and may have vanable or not-fully-known tin^mg
Sa alrfstfcs We r^por^ on invest^tions of partial order methods, approximation methods, abstraction rriethods,
fnd Se Sles^d Snguish anomaly-free behaviors, that can be used to improve the tracteb.lity of ^dd-^hecking
for such models. We also report on use of insights gained in this work to produce new results for simpler models^
anomaly-Tree preemptive scheduling of repetitive job shops, and a new model and scheduling algorithms for globally
asynchronous distributed sample data systems.

14. SUBJECT TERMS

real-time, hybrid automata, abstraction, model-checking

17. SECURITY CLASSIFICATION

UNCLASSIFIED

18 SECURITY CLASSIFICATION
OF THIS PAGE

19 SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

7
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

BEST AVAILABLE COPY

20040922 Oil

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

20 August 2004

Complex Real-Time Systems

2001-2004 Final Report

Contract Number F49620-01-C-0024

Submitted to Air Force Office of Scientific Research

Steve Vestal

Honeywell Labs

3660 Technology Drive

Minneapolis, MM 55418

612-951-7049

steve.vestal@honevwell.com

t .

REPORT DOCUMENTATION PAGE Form Approved
0MB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any
other aspect of this collection of infomiation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188),V«bshington, DC 20503.

1. AGENCY USE ONLY (Leave Wank) 2. REPORT
DATE

30-JUN-04

REPORT TYPE AND DATES COVERED

Final Report 2001 - 2004

4. TITLE AND SUBTITLE

Real-Time Complex Systems
6. AUTHOR(S)

Steve Vestal

FUNDING NUMBERS

F49620-01-C-0024

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Labs
3660 Technology Drive
Minneapolis, MN 55418

8. PERFORMING ORGANBIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research
801 North Randolph Street
Ariington, VA, 22203

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTAL NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We developed modified linear hybrid automata models for complex real-time tasks, e.g. tasks that have complex
internal behaviors, may interact or synchronize in complex ways, and may have variable or not-fully-known timing
characteristics. We report on investigations of partial order methods, approximation methods, abstraction methods,
and use of rules to distinguish anomaly-free behaviors, that can be used to improve the tractability of model-checking
for such models. We also report on use of insights gained in this work to produce new results for simpler models:
anomaly-free preemptive scheduling of repetitive job shops, and a new model and scheduling algorithms for globally
asynchronous distributed sample data systems.

14. SUBJECT TERMS

real-time, hybrid automata, abstraction, model-checking

17. SECURITY CLASSIFICATION

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

7
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

20 August 2004

1. Objectives

The objectives were to enable more dynamic and robust real-time scheduling and analysis of

complex large-scale systems in the presence of variable or unpredictable behaviors. We want to

support complex task models in which tasks may non-deterministically select among alternative

behaviors, in which tasks may use non-trivial protocols to interact with each other, and in which

different tasks may have different performance requirements (e.g. hard deadlines versus high

average throughputs). We want to develop distributed and highly tractable allocation and

scheduling policies that achieve high resource utilizations. We want to provide high assurance

that performance requirements will be met in the presence of uncertainty.

We developed and applied new hybrid system models and analytic methods to address these

problems. We developed methods to concisely introduce real-time scheduling behaviors into

systems of real-time tasks whose behaviors (both temporal and functional) were specified using a

hybrid automata notation. We investigated improved model-checking methods for such models,

including partial order methods, and the use of rules to distinguish anomalous from anomaly-free

behaviors to simplify the model. We developed approximation and hierarchical abstraction

methods for more tractable analysis. Using insights gained from this work, we were able to

obtain some new results for more traditional models. We developed methods for anomaly-free

preemptive scheduling of repetitive job shop problems. We developed a new model and

methods for globally asynchronous end-to-end scheduling in heterogeneous systems.

2. Accomplishments/New Findings

We had earlier developed algorithms for improved model-checking of systems of linear hybrid

automata. Using these methods, we were able to model-check a problem of real-world size and

complexity (a model of the task management code modules of a real-time middleware layer).

However, as with all model-checking approaches, these algorithms suffer from combinatorial

explosion as the problem size grows. One source of combinatorial explosion occurs when there

many possible transitions out of a system state, where full enumeration will explore all are

20 August 2004

possible orders in which these transitions can occur. Partial order methods have been very

successful in dealing with certain discrete model-checking problems (e.g. the widely-used SPIN

tool from Bell Labs). We developed some preliminary partial order methods for linear hybrid

automata and prototyped them in our tool, with encouraging results. These methods involve

checking to see if, among a set of enabled transitions out of a region, the region reached when

they are taken in one order always contains the region reached when they are taken in the other

order (in which case the second order need not be explored. We also developed a preliminary

approach to prove the correctness of such techniques, involving a kind of "algebra" over

sequences of operations during model-checking. However, we were unable to demonstrate truly

dramatic benefits (other than for the special case of models that contained many singular guards),

or to push through a proof of correctness under the current contract.

After we prototyped our hypothetical partial order method, we were able to solve some problems

that were larger than before. Unfortunately, the size of the polyhedra (number of continuous

variables and linear inequalities in a region) became large enough that we began to see numeric

problems. For example, CPLEX (a very widely-used commercial package) would sometimes

determine that the exact same set of inequalities was feasible for one objective but infeasible for

another. We conjecture this is due to high degrees of redundancy and degeneracy in the sets of

inequalities. We worked with the Institute for Mathematics and its Applications at the

University of Minnesota to identify some alternative approaches to deal with this problem (e.g. a

modified version of an algorithm that always progresses and hence cannot cycle at degenerate

vertices, algorithms that use rational rather than real arithmetic). This problem was presented as

a workshop problem at the IMA Mathematical Modeling in Industry Workshop for Graduate

Students in August 2004. The report produced by the graduate students who worked on this

problem is attached as an appendix.

It has been known for a long time that many multi-resource scheduling algorithms exhibit

anomalous behaviors, in the sense that simplifying a problem (e.g. reducing the compute time of

some task) may result in a worse schedule. Such schedulers are not robust in the face of run-

time variations in behavior. This complicates worst-case analysis and verification of systems.

We investigated both execution time anomalies (a deadline is missed when a less-than-worst-

case execution time occurs) and release time anomalies (a deadline is missed when a greater-

than-minimum inter-release time occurs). We showed that optimal time-triggered preemptive

3

20 August 2004

priority schedules may be anomalous, but then we also showed how any time-triggered

preemptive priority schedule (optimal or not) can be converted to an anomaly-free schedule. We

showed that anomalous behavior cannot be avoided given arbitrary phase offsets betvveen release

times. We made a preliminary identification of a scheduling policy and schedulability analysis

algorithm for asynchronous systems with lower-bounded but otherwise nondeterministic release

times that is anomaly-free with respect to execution times and has bounded anomalies with

respect to release times, but were not able to push through the detailed proof and develop a

publishable paper on the current contract. A draft copy of a technical paper that describes these

results is attached as an appendix.

A reason for our interest in anomalous scheduling is that, if a system may exhibit anomalous

behaviors, then model-checking a hybrid model of that system must explore all possible ranges

of compute times and inter-arrival times. We developed a preliminary rule for determining,

during model-checking, when a transition can be guaranteed to not introduce anomalous

behaviors (when the transition cannot release a task that would preempt another any earlier than

it would have otherwise). Such transitions could then be deferred (i.e. ignored in certain system

regions), which our preliminary studies suggest could significantly increase the size of problem

that could be model-checked. However, we were unable to complete a prototype evaluation or

proof of correctness for this method on the current contract.

Several researchers have investigated the use of approximation techniques to improve model-

checking speed at the expense of occasional false negative results (if the model checks then it is

correct, but some correct models may be incorrectly flagged as erroneous). We prototyped and

experimented with several approaches. In our experience, it is very difficult to introduce

approximate polyhedra in a way that is both fairly precise (few false positives) yet significantly

reduces model-checking time. Any approximate polyhedron must be introduced onto the search-

from list in the model checker, and in our exercises this often resulted in more effort rather than

less. An approximation so large that it significantly reduced model-checking time was so

imprecise that large numbers of correct models were erroneously labeled incorrect. We found

only one method that offered modest gain (e.g. a factor of 2 reduction in the number of regions

explored with very few false positives). In any reachable discrete state, there are typically

numerous polyhedra enumerated. We first grouped these into clusters according to some

clustering rule (e.g. their intersection is heuristically likely to be of significant size). We then

4

20 August 2004

generated an approximation that contained each cluster by taking the "earliest" (in some intuitive

sense) polyhedron and projecting it forward in time using the normal reach-forward operation so

that the result contained the cluster. A method to estimate a set of variable rates needed to do

this was used. However, because of the way our model-checker was written (keeping a multiple

of a linear constraint so we stored only integer coefficients, rather than rational numbers for each

individual coefficient), we were unable to prototype and evaluate an accurate version of this

method on the current contract.

Another approach, first explored in discrete process algebras, is to develop an abstract

automation that is equivalent (in some sense) to a subset of the concrete automata in a system,

then substitute the abstract for that subset and perform analysis on the reduced system. We

developed preliminary methods to verify that a hand-developed abstraction (such as a

specification of system behavior) is a safe approximation (not necessarily equivalent) to a

concrete subsystem. We developed methods not only for hybrid automata, but also for

concurrent stochastic automata. These methods were applied within the context of an emerging

standard architecture description language for embedded computer systems. A much more

complete toolkit of such methods would be needed before this approach became practically

applicable, but it appears to offer great promise to improve the development of rigorous

specifications as well as improve the tractability of model-checking. These results will be

presented at an upcoming IFIP World Congress workshop in Toulouse in August 2004. This

paper is attached as an appendix.

All the published research models (of which we are aware) for distributed real-time systems

either fall into the time-triggered class (points along a sequence of events are statically assigned

a global time of occurrence) or the event-triggered class, including those using traffic regulation

or shaping for scheduling and analysis purposes (once a sequence of subtasks arrives, they are

executed in order, each released when its successor completes). However, there is a third model

that occurs fairly often in practice, a system of periodic tasks that sample each other's outputs.

This model is obtained, for example, by starting with a continuous-time model for the activity on

each node (as a control engineer would), then converting each node independently to a sampled

data system. We first identified this model, and defined a new metric for end-to-end

performance (the age of an output is the maximum time elapsed since the inputs on which it is

based were sampled), on an internal project looking at possible architectures for next-generation

5

20 August 2004

air transport aircraft (e.g. 7E7). Under contract, we used data obtained from proposed hardware

architectures and application software to generate an age scheduling model of real-world size

and' complexity. We explored methods to multiplex and de-multiplex signals over busses and

switched networks. We prototyped the automatic generation of a nonlinear constraint model

whose solution would be a feasible schedule that satisfied end-to-end age bounds, and used a

commercial tool (AMPL/CONOPTS) to demonstrate that schedules for systems of this size could

be tractably solved using this approach. The practical results of this study will be presented at

the upcoming SAE World Congress in Reno in November 2004. A draft copy of a paper that

gives the technical details isattached as an appendix.

3. Related Publications

"Architecture Specification and Automated Timing and Safety Analysis for a Large Avionics

System," to be presented at SAE World Congress, Reno, NV, 3 November 2004.

"Hierarchical Composition and Abstraction in Architecture Models," with Pam Binns, to appear

IFIP Workshop on Architecture Description Languages, Toulouse, France, 27 August 2004.

"Formalizing Software Architectures for Embedded Systems," with Pam Binns, First

International Workshop on EmbeddedSoftware,Tahoe City, CK October 200\.

"Formalizing Software Architectures for Embedded Systems," with Pam Binns, Monterey

fForJt5/jop 2001, Monterey, CA, June 2001.

"Modeling and Verification of Real-Time Software Using Extended Linear Hybrid Automata,"

NASA Langley Formal Methods Workshop, iune 2000.

"Formal Verification of the MetaH Executive Using Linear Hybrid Automata," Real-Time

Applications Symposium, ixmt 2000.

4. Interactions/Transitions

The emerging SAE standard Avionics Architecture Description Language (AADL), which is

based on our original MetaH language, is expected to be formally issued in Fail 2004. This

20 August 2004

standard formally specifies some real-time tasking semantics using hybrid automata concepts

developed and demonstrated on this contract. Contact: Bruce Lewis, US Army AMCOM,

bruce.lewis@,sed.redstone.armv.mil

The problems we uncovered in solving for containment among polyhedra in the presence of high

degrees of redundancy and degeneracy were presented as a workshop problem at the IMA

Mathematical Modeling in Industry Workshop for Graduate Students in August 2004. The

resulting technical report is attached as an appendix. Contact: Fadil Santosa, Institute for

Mathematics and its Applications, santosa(a),ima.umn.edu.

We are a subcontractor to the University of Pennsylvania on an NSF program to develop

automated testing technologies for hybrid systems. This is an outgrowth of our work on this

contract. Contact: Insup Lee, University of Pennsylvania, lee@,central.cis.upenn.edu.

5. New Discoveries/Inventions/Patents

No patents were filed under this contract.

6. Honors/Awards

The principle investigator serves as a member of the DUSD(S&T) Avionics Advisory Team.

The AAT provided technical consulting to the F/A-22 Raptor and F-35 JSF programs. Contact:

Andre Van Tilborg, DUSD (Science & Technology), Andre.VanTilborg@.osd.mil

20 August 2004

Appendices

A. "New Approaches to Polyhedral Containment Check within a Linear Hybrid

Automata Reachability Procedure," technical report prepared by team 5 at

the Institute for Mathematics and its Applications 2004 Graduate Workshop,

sponsored by the National Science Foundation.

B. "Anomaly Free Real-Time Scheduling," draft publication.

C. "Hierarchical Composition and Abstraction in Architecture Models," to

appear ADL Workshop, IFIP World Congress, Toulouse, August 2004.

D. "Real-Time Sampled Signal Flows through Asynchronous Distributed

Systems," draft publication.

A Technical Report
NEW APPROACHES TO POLYHEDRAL CONTAINMENT CHECK

WITHIN A LINEAR HYBRID AUTOMATA REACHABILITY
PROCEDURE 1

Industry Mentor: Steve Vestal, Honeywell, Inc.

Jessica Conway^, Ali Khoujmane ^, Gary Kilper'*,
Harun Kurkcu ^, Rochelle Pereira^ Sonja Petrovic^

August 8-18th, 2OO4.

1 Introduction- Why Polyhedral Containment?

Computer scientists use a variety of specialized models to describe the be-
havior of an algorithm or computer system over time. Many of these models
can be subjected to a kind of analysis called reachability analysis, a special
case of model-checking. This analysis answers the question, " Given a model
and its initial state, is it possible to reach a second given state from the initial
state by any possible behavior of the system?" The model of interest here is
a linear hybrid automaton, which is a finite state automaton augmented with
a set of continuous variables and a set of rules about how the states of the
continuous variables may change as the system passes through a sequence of
the discrete locations [1].

Many reachability analj'ses are at heart an iterative search for a fixed
point of sets of reachable states. Given a state known to be reachable, enu-
merate other states that are reachable from it according to the model. Con-
tinue until every newly enumerated state has already been reached. The
state space of a linear hybrid automaton is uncountable since it includes the
states of continuously varying real-valued variables, but it turns out that

^Project 5 of tlie 2004 IM.A. Summer Piogiam: Matliematical Modeling in Industry- A
Worksliop for Graduate Students. This work was supported in part by AFOSR and NSF
through IM.\

-Northwestern University
^Texas Tecli University
"• University of Chicago
^University of Miime.sota
^University of Chicago
'University of Kentucky

the reachable variable states can all be described by enumerating a set of
polyhedra [1]. To determine when the reachability algorithm can terminate,
we need to decide if the set of points in a newly enumerated polyhedron is
contained in previously enumerated polyhedra. This is often done in practice
by maintaining a list of previously enumerated polyhedra, and for each newly
enumerated polyhedron checking to see if it is contained in any of these.

An analysis tool developed at Honeywell Labs for reachability analysis
of linear hybrid automata used a fairly straight-forward algorithm to check
for polyhedral containment [19]. This algorithm required the solution to a
set of linear programming problems for each containment test. However,
this algorithm exhibited anomalies for a small but significant portion of the
polyhedra encountered (100% correct handling of all polyhedra is required
for successful model analysis).

For example, CPLEX would sometimes decide a set of constraints was
feasible and sometimes infeasible, depending on the goal function used. A
second LP solver (a primal/dual algorithm) frequently cycled at degenerate
vertices, occasionally indefinitely (the manner in which the polyhedra are
constructed tends to introduce many redundant constraints).

The problem presented to the IMA team was to investigate these anoma-
lies and come up with approaches to provide a robust and efficient polyhedral
containment test.

Note: We assume that all polyhedra are bounded, as this is the case for
the given analysis tool.

2 The Problem: Containment Check

The main objective of this report is to investigate different approaches to
check polyhedral containment. The polyhedra are given by sets of inequalities
that represent the constraints on the continuous variables in the given hybrid
state. The equations represent hyper planes, which form the polyhedron.
The directions of the constraint inequalities determine the interior of the
polyhedron. Each such inequality can be represented by a row in a constraint
matrix.

So the problem can be formulated as follows: given a polyhedron I =
{x e R'' : Cx < d}, decide whether it is contained in a candidate outer
polyhedron O = {x e R'' : Ax < b}. Note also that some of our techniques,
in particular the linear programming solvers, assume that a; > 0, but this is

already the case in our problem.

3 Linear Programming Approach

The original version of the reachability analysis tool in [20] solves the con-
tainment problem using the following linear programming approach: for each
constraint (each facet) of the outer polyhedron, minimize that row of the con-
straint matrix A as the objective function subject to the inner polyhedron's
constraints. The polyhedra are generated in such a way that they are all
convex. The idea is to ensure that the inner polyhedron satisfies the con-
straints of the outer polyhedron, hyperplane by hyperplane; each verification
consists of solving a linear programming problem. Given the inner polyhe-
dron / = {x\Cx < d} and the outer polyhedron O = {x\Ax < 6}, label each
row of .4 o, and the corresponding maximal value bi for i = 1, ...,n, n is the
number of constraints in O. Then the following algorithm is applied:

for 7 = 1 to n
/ = max QiX

subject to Cx < d
a- > 0

if / > b,
stop; not contained.

If at each step / < 6,-, then the inner polyhedron is indeed contained by
the outer polyhedron.

It should be noted that the polyhedra might be built out of a large number
of inequalities, so this approach is time consuming. In fact, problems having
a few hundred constraints have been encountered.

The most common approaches to solving a linear programming problem
(LP) are the Simplex algorithm or a primal-dual algorithm [10]. But there
can be problems with these approaches [13]. Now, the inequality systems with
which wc are primarily concerned are usually overdetermined, so a goodlj-
numl)er of degenerate vertices show up. These vertices are such that a greater
number of edges run through them than there are variables to be constrained.
Becauso standard LP solvers work b>- moving from vertex to vertex along
edges until the optimal solution is found, too many edges passing through
the same vertex may cause stalling or cycling. It is said that for most practical

applications this is not an obstacle; for our applications, it is.
We wish to minimize or avoid this difficulty. One source of this difficulty

is redundancy - extra constraints imposed upon a system of inequalities that
are already implicitly there. (It should be noted that the removal of all
redundancy, if it were possible, is still not a perfect solution, as there exist
degenerate systems that contain no redundancy.) Section 3.1 contains a
few approaches or attempted approaches to reduce redundancy. Section 3.2.
discusses the least squares primal-dual (LSPD) algorithm; it solves the LP
problem in such a way that the degeneracy problem is no longer an obstacle.

3.1 Reducing Redundancy

As stated, reducing redundancy in a system may alleviate problems caused
by degeneracy. The following are attempts at such reduction. Also it should
be noted that the end of section 5.1.1 points to possible further resources on
the topic.

3.1.1 Brute Force Method

We are given the system of m + 1 inequalities ^x < b in n variables,
X = (a;i,X2, .-,a;„), where some of the inequalities may be redundant. This
approach is explained in [7] and is similar to [20], Let s^ be the last row of
.4, Ai be the remainder of A after the removal of this row, and t be the last
element of b, bi be the remainder of b after the reduction. Removing these,
we have the reduced system of rh inequalities ^ix < bj; we wish to know
if this system implies the last inequality, s^x < t. To do this, the following
linear programming problem is posed:

max s^x

subject to Aix < 6i

Then if the objective function's optimal value is less then or equal to i, the
inequality s^x < f is redundant and can be removed.
We repeat this process for each inequality to make the final set of inequalities
as redundancy free as possible. Though this method is systematic, it is not
very efficient. What's more, as it reduces to an LP problem, it is still itself
subject to degeneracy problems.

3.1.2 Other Methods

There were attempts to reduce redundancy in more efficient ways. Redun-
dancy in equality systems can be eUminated using QR decomposition, well
explained in [17]. More specifically, one would use a rank-revealing QR de-
composition [16] to determine the number of extranneous or Hnearly depen-
dant constraints we have. [16] is especially nice because it deals with sparse
matrices, which we are likely to have. Attempts were made to use this de-
composition in different ways to reduce the number of inequality constraints,
but nothing came of that. We are unsure why; this method is applicable
to equalities, but not inequalities. Also, applying it to degenerate vertices
might work, except that degeneracy does not imply redundancy.

3.2 Avoiding Stalling at Degenerate Vertices- the LSPD
Algorithm

In case that the existence of degenerate vertices cannot be avoided, there
is an algorithm that will not stall at such vertices. Namely, it is the least
squares primal-dual algorithm (LSPD) [5]. The LSPD completes in finitely
many steps, and avoids the degeneracy problem by not requiring travel via an
edge toward the next vertex. Instead, it guaranteeing travel in the optimal
direction towards the best feasible solution. This is done by using a non-
negative least squares algorithm [14] as a subroutine.

The least-squares primal-dual algorithm we investigated solves the stan-
dard linear programming problem to find x e E" with:

min ex

s.t. Ax = b

x> 0

where 6 € R"'. c^ e R" is the cost vector, and .4 e R'"^" is the coefficient
matrix of constraints.

3.2.1 The Dual Problem

There is a prefilter to check if the standard problem is infeasible. If this
prefilter fails, LSPD instructs us to focus attention on the dual problem. We

now look for a vector TT^ € M"" such that

max nb

s.t. TTA < c

Duality yields that an optimal solution for the dual problem produces an
optimal solution for the standard problem; if the dual problem is unbounded,
the standard problem is infeasible.

3.2.2 NNLS as a Subroutine

To find a solution to the dual problem, we go through a series of iterations.
At each stage i, we have a feasible solution to the dual problem TTJ and a
matrix Ei whose columns are the columns A satisfying a relation dependent
on TTj. Here, we look at the non-negative least squares problem [14]

min \\b-Eixf

s.t. x>0

If the minimum of this solution is zero at a vector xt, it can be shown
that TT, is an optimal solution to the dual problem and Xj can be augmented
with zeros to provide an optimal solution to the standard problem.

3.2.3 A Better Direction

If the non-negative least squares problem is not zero, Farkas' Lemma pro-
vides us with a general direction pi, dependent on Ei and b, in which to find
a strictly better solution to the dual problem than TT,;. If p, satisfies certain
properties relative to .4, the dual problem can be shown to be unbounded,
and thus, the standard problem is infeasible. Otherwise, we can generate
TTj+i = TTj -I- tpi and begin the iterative process again.

A salient property of the direction of p,: is that it need not be along an
edge of the dual polyhedron. Unlike the simplex algorithm, p,; moves along

the direction of steepest ascent. Since ||pj+i||^ < ||p,|p, the dependency of
Ei upon p dictates that each iteration produces a different matrix £,. Be-
cause each Ei is comprised of columns of A, and since A has finitely many
columns, the LPSD algorithm must terminate in finitely many steps. The
algorithm avoids degeneracy because it uses NNLS as a subroutine; it took
fewer iterations in test problems than the simplex method.

4 Quadratic Programming Approach

We would like to reduce the number of (linear programming) problems to
solve. One approach is to formulate the containment check as follows.

Consider the inner and outer polyhedra, given by / = {re G i?" : Cx < d}
andO= {xe/?" :>lx < 6}.

We show containment does not hold by proving the existence of a point
X satisfying Cx < d (x is in the inner polyhedra) that satisfies one of the
constraints described by Ax > b (x is outside at least one face of the outer
polyhedron). Noting that Ax - b measures the "size" of the constraint vio-
lation, we formulate the problem as follows, as suggested by Tom Grandine
[12]:

max y^{Ax - b)

subject to Cx < d

l|y||. = i,
y>o.

where y is a new variable vector.

This problem is no longer a linear programming (LP) one, but a quadratic
programming (QP). Such problems can be solved by QP solvers or by most
commercial LP solvers. This objective function will be maximized whenever
the largest constraint violation for the outer is multiplied by one. with all
the others multiplied by zero. As before, inner is contained within outer
whenever the objective function value is < 0. It is not contained whene\-er a
positive objective function value can be obtained. This introduces one new
variable for each row in A, but it still solves the problem by solving a single
QP problem at the expense of doubling the number of problem variables.
Considering this, it will be a good idea whenever .4 has at least eight rows.

5 New Formulation of Containment Problem

Finally, we propose a new formulation altogether for the polyhedra con-
tainment problem. Namely, one can first find all the vertices of the inner
polyhedron and check whether they are all contained in the candidate outer
polyhedron. Again, boundedness and convexity of our polyhedra guarantee
that vertex containment implies polyhedron containment.

The first goal is thus to find all the vertices of the polyhedron given
by a set of linear constraints. The process of converting the representation
I = {x : Ax <b} into 7 = {vi,... ,Un}, where Vi are the vertices, is called
vertex enumeration.

The second goal is to check whether each vertex Vi of the inner polyhedron
satisfies the constraints of the candidate outer.

5.1 Vertex Enumeration

We found two algorithms that "efficiently" enumerate vertices. It should be
noted that the number of vertices may be combinatorially large with respect
to the size of the constraint matrix, but we don't know if this is true for the
polehedra seen in Linear Hybrid Automata analysis. These may have special
structure we don't understand yet.

5.1.1 The Irs Algorithm

The following outlines a part of the vertex enumeration reverse search al-
gorithm {Irs). It is thoroughly explained in [3]. Recall that a polyhedron
can be described by a list of inequalities (H-representation) or by a list of
its vertices and extrems rays (V-representation). Irs is a C program that
converts a H-representation of a polyhedron to its V-representation, and vise
versa. That is, it solves vertex enumeration and convex hull problems.

The Irs is based on the reverse search algorithm. Breifiy and informally,
the reverse search "rs" algorithm works as follows. Suppose we have a sys-
tem of m linear inequalities defining a d-dimensional polyhedron in R^ and a
vertex of that polyhedron is given by indices of d inequalities whose bound-
ing hvperplanes intersect at the vertex. These indices define a cobasis for
the vertex. The complementary set of m - d indices are called a basis. For
any given linear objective function, the simplex method generates a path be-
tween adjacent bases (or, equivalently, cobases)'which are those differing in

8

one index. The path is terminated when a basis of a vertex maximizing this
objective function is found. The path is found by pivoting, which involves
iterchanging one of the hyperplanes defining the current cobases with one in
the basis. The path chosen from the initial given basis depends on the pivot
rule used, which must be finite to avoid cycling. The initial implementation
of rs used Eland's least subscript rule. If we look at the set of all such paths
from all bases of the polyhedron, we get a spanning forest of the graph of
adjacent bases of the plyhedron. The root of each subtree of the forest is
a basis of an optimum vertex. The reverse search algorithm starts at each
root and traces out its subtree in depth first order by reversing the pivot rule.

Irs solves degeneracy by use of the well-known lexicographic pivot selec-
tion rule for the simplex method. This rule is defined for a subset of the bases,
known as lex-positive. The subgraph of lex-positive bases forms a connected
subgraph of the basis graph which covers all vertices of the polyhedron. Fur-
thermore an objective function can be chosen so that the simplex method
initiated at any lex-positive optimum basis. If we initiate the reverse search
method at this basis and reverse the lexicographic pivot rule we generate a
spanning tree of the graph of all lex-positive bases. This is the core of Irs.

The main function of Irs is to find the vertices and extreme rays of a
polyhedron described by a system of linear inequalities. Additional func-
tions of Irs are : facet enumeration, computation of voronoi vertices, volume
computation, estimation of the output size, and restart capability.

Although Irs is a large improvement on rs, it is far from an efficient
general solution to the vertex enumeration problem. Such a solution should
reasonably be required to generate all vertices in time polynomial in the
input and ouput size. Currently no such algorithm is known to exist. Irs
is efficient for vertex enumeration of simple (or near-simple) polyhedra, or
dually for facet enumeration of simplicial (or near-simplicial) polyhedra.

Remarks. Note that the polyhedra encountered in our reachability analy-
sis tool are simple (i.e., have no "holes" in them). Also, there may potentially
be a combinatorial number of vertices. And, more importantly, this paper
includes careful treatment of degeneracy, so it should be looked into for more
ideas about solving the degeneracy problem.

5.1.2 The Double Description Algorithm

Another tactic for solving the vertex enumeration problem is the double de-
scription method. Here, we enumerate the extreme rays of polyhedra defined
by the conditions Ax > 0 for a real-valued matrix A of dimensions mx d
and rank{A) = d. Translations of this method exist to handle the vertex
enumeration method [9].

Definitions A double description (DD) pair {A, R) is a pair of real-valued
matrices satisfying

Ax>^\fix = RX for some A > 0.

The representation matrix A gives rise to a polyhedral cone,

P{A) ^{xeW^ : Ax>0}

The generating matrix R, too, gives rise to a set,

R= {x eW^ -.x =^ RX for some A > 0}

Observe that if [A, R) is a double description pair, P{A) = R. Minkowski's
Theorem for Polyhedral Cones [9] states that given a matrix A of appropriate
dimensions, there exists a generating matrix R for which {A,R) is a double
description pair. Intuitively, the columns of il correspond to rays generating
the cone, P(-4). We may ask whether there exists a minimal set of raj's gener-
ating P{A), or equivalently, whether there exists a minimal generating matrix R
such that no submatrix generates the cone P{A). These minimal rays or col-
umn vectors of i? are extremal rays.

The Algorithm The algorithm begins with a DD pair {Ao,Ro) in which
the rows of .4o are a subset of the rows of A and it!o is a minimal matrix
for P{Ao)- At each stage, a new row of A is added to Ai to yield Ai+i
and a generating minimal matrix Ri+i is constructed. The vectors (extremal
rays) used to build Ri are "born" at the i + 1-stage: the i + 1 constraint
of A is the first constraint which forces these vectors to be extremal rays
of P{Ai+i). This information is stored and helps reduce redundancy. This
process continues until all the rows of A have been added to the original
submatrix Ai and a final generating matrix R is developed. Conceptuallj',
we build the polyhedron one constraint at a time keeping track of which
constraint introduces extremal rays. The algorithmn is efficient in solving
degenerate problems where objects are overconstrained.

10

5.2 Vertex Containment

Once the vertices of the inner polyhedron / are enumerated, we need to check
whether they are contained in the candidate outer polyhedron O.

5.2.1 Brute Force Method, Again

There is one obvious way to solve this problem- the brute force way- since we
are given the vertices of / and the inequalities that determine the boundary
of O. However, there are other ways to check the vertex containment which,
if the above "direct" approach proves to be expensive, would be a better
solution.

5.2.2 Enumerate both / and O

Suppose it is not very expensive to enumerate vertices. Enumerating the
vertices of the outer polyhedron O as well provides the representation O -
{Pi>---,Pm}- Let V be a vertex of I. There exists, indeed, an efficient
way of determining whether the given point v lies inside of the polytope
determined by vertices of {pi,... jp^}. A standard method that uses a linear
programming technique is described in detail by Fukuda [7]. But, as LP
solving (of complexity at least 0{r?)) is more expensive then evaluating the
constraints {0{J^), so care must be taken in this case. If the LP problem to
be solved is small, then this may be a good solution. Recall again that the
number of vertices may grow combinatorially in the number of constraints:
but we are currently unsure how "big" our polyhedra are.

5.2.3 Projected Containment

Another vertex containment approach would be done in two steps as follows.

• Project the vertices of / onto the facets of O to bring this to lower
dimensions:

• Check containment of the projection.

We conjecture that the projection can be done efficiently using some
known technique, but this is yet to be investigated.

Further, the point-containment problem has gotten a lot of attention for
the two- and three-dimensional cases, as these are the ones most useful for

11

the computer grapics applications where polyhedral containment checks are
frequent. The idea behind these quick point-containment algorithms is simple
and can be summarized as follows. First, they calculate the homogeneous
coordinate [15] representation of the vertices of the given polyhedron O (this
is readily available in computer graphics applications). Next, they determine
the signs of the deteminants of the matrices which consist of the vertices'
homogeneous coordinates. Finally, the determinant signs obtained from each
vertex of 0 are used as input into a short Boolean expression, whose true-
false output indicates whether the polyhedron contains the given point or
not.

The trouble with this technique is that, although the Test 4.3.6 and Figure
8 in [15] give the explicit algorithm, it only works for the point-in-polygon
test, that is, our projection must be done onto a two-dimensional polygon.
However, the background definitions in [15] as well as the last conjecture
in [18] suggest that the idea of a projectively invariant point-containment
check can be extended to RP- for any n > 3. We further conjecture that
even though the dimension n may be large, the determinant calculation of a
(n - 1) X (n - 1) matrix would be quicker than solving a linear programming
problem. This would yield a new polyhedral containment check that does
not solve large LP or QP problems, but is based on vertex enumeration,
projection, determinant calculation, and Boolean expression evaluation. It
remains to be shown which of these approaches is more effective.

6 Conclusions

We investigated three methods to handle the polyhedral containment prob-
lem. However, due to contractual restrictions, we have been unable to test
our various ideas on the actual code to see which best remedies the problem.
Our expectations are that at least one of the methods will solve the problem,
and one of these positive solutions will be faster than the others. Further-
more, leads for reducing redundancy and dealing with degeneracy problems
are worth a longer look. Software packages exist that "solve" the vertex
enumeration problems, such as [8]. The efficiency of the vertex enumeration
approach cannot be measured until more fundamental research is done on
the n-dimensional projectively invariant point containment algorithms.

12

References

[1] Rajeev Alura, Thomas Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic verification of embedded systems. IEEE Transactions on Software
Engineering, 22(3): 181-201, 1996.

[2] David Avis. User's Guide for Irs - Version 3.2a, November 1998.
http://cgm.cs.mcgill.ca/ avis/C/USERGUIDE32a.html on August 16,
2004.

[3] David Avis. Irs: A revised implementation of the reverse search ver-
tex enumeration algorithm, http://cgm.cs.mcgill.ca/ avis/C/lrs.html on
August 16, 2004, January 1999.

[4] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra. Discrete and
Computational Geometry, 8:295-313, 1992.

[5] Earl Barnes, Victoria Chen, Balaji Gopalakrishnan, and Ellis Johnson.
A least-squares primal-dual algorithm for solving linear programming
problems. Operations Research Letters, 30:289-294, 2002.

[6] Komei Fukuda. Is there an efficient way of determin-
ing whether a given point q is in the convex hull of
a given finite set S of points in /?''?, August 2004.
http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/node22.html.

[7] Komei Fukuda. Is there any eflficient algorithm to remove redun-
dant inequalities from a system of linear inequalities. August 2004.
http://www.ifor.math.ethz.ch/stafF/fukuda/polyfaq/node24.html.

[8] Komei Fukuda and Ichiro Mizukoshi. Vertex enumer-
ation package for convex polytopes and arrangements,
version 0.41 beta. Mathematica package, March 1993.
http://librarj'. wolfram.com/infocenter/MathSource/440/.

[9] Komei Fukuda and Alain Prodon. Double description method revis-
ited. http://www.cs.mcgill.ca/ fukuda/soft/cdd.home/cdd.html on Au-
gust 16, 2004.

13

[10] Saul I. Gass. Linear Programming: Methods and Applications. McGraw-

Hill, New York, 1985.

[11] Balaji Gopalakrishnan. Personal communication, February 2004.

[12] Thomas Grandine. Personal communication, August 2004.

[13] J.A.J. Hall and K.I.M. McKinnon. The simpest examples where the
simplex method cycles and conditions where EXPAND fails to prevent
cycling. Mathematical Programming, 100(1):133-150, 2004.

[14] S.A. Leichner, G.B. Dantzig, and J.W.Davis. A strictly improving linear
programming phase I algorithm. Annals of Operations Research, 47:409-

430, 1993.

[15] Masatoshi Niizeki and Fujio Yamaguchi. Projectively invariant inter-
section detections for solid modeling. ACM Transactions on Graphics,

13(3):277-299, 1994.

[16] Daniel J. Pierce and John G. Lewis. Sparse multifrontal rank revealing
qr factorization. SIAM Journal on Matrix Analysis and Applications,
18(1):159-180, 1997.

[17] Yousef Saad. Iterative methods for sparse linear systems. PWS Pub.
Co., Boston, 1996.

[18] Federico Thomas and Carme Torras. A projectively invariant intersec-
tion test for polyhedra. The Visual Computer, 18(7):405-414, 2002.

[19] Steve Vestal. Modeling and verification of real-time soft-
ware using extended linear hybrid automomata. Lfm2000:
Fifth NASA Langley Formal Methods Workshop, June 2000.
http://techreports.larc.nasa.gov/ltrs/PDF/2000/cp/NASA-2000-

cp210100.pdf.

[20] Steven Vestal. A new linear hybrid automata reachability procedure.

Draft, March 2001.

14

Anomaly-Free Real-Time Scheduling

Steve Vestal*
steve.vestal@honeywell.com

Honeywell Laboratories
Minneapolis, MN 55418

Draft of 30 June 2004

Abstract
We conjecture that using anomaly-free scheduling

may contribute to more robust and easily modified
and verified real-time distributed systems. We con-
sider both execution time anomalies (a deadline is
missed when a less-than-worst-case execution time oc-
curs) and release time anomalies (a deadline is missed
when a greater-than-minimum inter-release time oc-
curs). After discussing this conjecture and defining
our scheduling problem, we show that optimal time-
triggered preemptive priority schedules may be anoma-
lous. We show how any time-triggered preemptive pri-
ority schedule (optimal or not) can be converted to an
anomaly-free schedule. We show that anomalous be-
havior cannot be avoided given arbitrary phase offsets
between release times. We give a scheduling policy and
schedulability analysis algorithm for asynchronous sys-
tems with lower-bounded but otherwise nondetennin-
istic release times that is anomaly-free with respect to
execution times and has bounded anomalies with re-
spect to release times.

1 Introduction
It has been known for a long time that many multi-

resource scheduling algorithms exhibit anomalous be-
haviors, in the sense that simplifying the problem can
increase response times. For example, a correctly op-
erating system may suddently start missing deadlines
when some tasks start consuming less execution time,
e.g. due to data-dependent execution, or due to a
software or hardware upgrade. A function may start
missing deadlines when another function is turned off
or fails. A small change in one execution time may
cause significant changes in the order and timing in
which other tasks start and complete. Similar anoma-
lies can also occur with sporadic ta.sks, where an in-
crease in the time between releases may cause missed
deadlines.

Eliminating, or at least minimizing, anomalous be-
havior is useful in practice. Anomaly-free behavior
decreases the likelihood that an upgrade to a system
will have undesireable timing effects. This property

'Thi.s work was supported by the US Air Force Office of
Scientific Research under contract F49620-01-C-0024.

may be useful to help assure time partitioning between
applications, e.g. variations or aborts in one applica-
tion will not introduce timing faults into others. Test-
ing can be simpler and more confident, since worst-
case performance can be achieved by testing with only
worst-case timing parameters. The general reduction
in nondeterministic timing and sequencing behaviors
make debugging easier, and may permit reduced in-
strumentation of systems.

The scheduling approach we discuss assigns in-
termediate deadlines for each step, then uses earli-
est deadline first (EDF) scheduling on each proces-
sor. Within this context, we present both a globally
time-triggered and a globally asynchronous method.
We show these methods avoid execution time anoma-
lies in both time-triggered and asynchronous systems.
Release time anomalies are absent in time-triggered
systems, and are bounded and analyzable in asyn-
chronous systems.

2 Related Work
The existence of execution time anomalies for job

shop scheduling was first reported in the literature in
a classical paper by Graham[3]. Jackson showed that
optima! job shop scheduling does not require the in-
sertion of idle times (unlike nonpreemptive job shop
scheduline)[4]. Obserations about and generalizations
of Jackson's result are central to our paper.

Andersson and Jonsson have studied preemp-
tive scheduling anomalies in multi-processor systems
for tasks that are periodic but without precedence
constraints[2]. They also consider dynamic realloca-
tion, which is not normally addressed in an integrated
way in the literature on end-to-end scheduling, and
which we do not consider in this paper.

The problem we address is a repetitive job shop,
often called end-to-end scheduling in the real-time
literature[6, 5]. Much of this literature implicitly ad-
dresses what we call release time anomalies. The typ-
ical reasons for this are temporal nondeterminism in
external release times, and the release of an interme-
diate step when its predecessor completes. Methods
of scheduling and analyzing such systems implicitly
bound any resulting anomalous behavior. As we dis-
cuss shortly, unexpectedly early completion of a step
is another rea.son why the release time of its succe.s-

sor may vaiy. Execution time anomalies are (to our
knowledge) almost never explicitly discussed in the lit-
erature.

3 Repetitive Job Shop
Our results are primarily based on earlier job shop

scheduling work, but our intended application is real-
time computer systems. We choose to satisfy no one
by using a mixture of terminology from the two fields
in our definitions.

We define a repetitive real-time job shop as follows.
A job is a finite sequence of steps. A step is bound to
one of a finite set of processors in the problem state-
ment, which is the processor responsible for executing
that step. A preemptive schedule assigns one or more
intervals of time on that processor to a step, where the
sum of the lengths of the intervals equals a specified
step execution time. The last point in the last exe-
cution interval in a schedule is called the completion
time for that step. Each job has a release time, before
which the first step of that job may not be executed
(the start of that step's first execution interval in a
schedule cannot occur before the job release time).
Subsequent steps in a job may not begin execution
until their predecessor step completes. A schedule is
feasible if the final step in every job completes before
a specified job deadline, otherwise the schedule is said
to be infeasible. A deadline is specified as a value
added to the release time, i.e. the deadline occurs a
fixed interval of time after the release time. A task is
a possibly infinite sequence of jobs, where the release
time for each job does not precede the deadUne of the
preceeding job in a task sequence.

4 Scheduling
A preemptive priority schedule uses a priority rela-

tion Si -< Sj between every pair of steps that might
ever be simultaneously executable on the same proces-
sor according to the precedence rules of the previous
paragraph. At any point in time at which a step is
being executed by a processor, it is always the step
that preceeds all other ready steps in the priority or-
der. That is, whenever a processor is executing, it is
always executing the highest priority ready step.
Theorem: For every feasible schedule there is a pre-
emptive priority schedule in which the completion
time for every step is no greater than in the original
schedule.
Proof: Prioritize steps according to their completion
times in the original schedule (an earliest completion
first priority relation). Now transform the original
schedule as follows. If any Si completes earlier than
some 5j, but there is an interval during which both
are ready but Sj is executing, then have Si rather
than Sj execute in that interval. Si will complete ear-
lier by just that duration; in the vacant interval cre-
ated following Si by this earlier completion, execute
Sj. That is, swap the execution intervals of 5, and

Sj that are not in priority order. This transformation
can be repeated until a preemptive priority schedule is
obtained, once in which no step completes later than
in the original schedule. □

The preceding definition of a preemptive priority
schedule permits inserted idle times, i.e. the processor
need not be executing when steps are ready. We will
call these lazy intervals. A schedule that has no lazy
intervals is called a work conserving schedule. In a
work conservaing schedule, no processor is idle when
there are ready steps that it could be executing.
Theorem (Jackson): For every feasible earliest com-
pletion preemptive priority schedule, every step will
complete at least as soon in a work conserving earli-
est completion preemptive priority schedule as in the
original (possibly lazy) schedule.
Proof: Find the earliest lazy interval, resolving ties
arbitrarily. Start executing the highest ready priority
step in this interval rather than deferring it. Since this
is the highest priority step, it must be the one executed
in the interval immediately following the lazy interval.
This transformation slides the executuion interval ear-
lier in the schedule to fill the lazy interval, which is
to say it swaps the lazy interval for this next execu-
tion interval. Either this step then completes earlier
(this step completes at the end of this interval), or this
transformation has no effect on any completion time.
This transformation may create a new lazy interval
on the processor hosting the successor step, but this
lazy interval occurs later than the original one. This
transformation can be repeated to move lazy intervals
later and later in the schedule, until they reach a point
at which they are no longer lazy because there are no
ready steps to be executed. Such points always exist
because a feasible schedule never loads any processor
beyond 100% utihzation. D

5 Anomalous Scheduling
We say a given scheduling algorithm (an algorithm

that accepts a repetitive real-time job shop problem
and produces a schedule) is anomaly-free with respect
to execution time if, for any feasibly scheduled prob-
lem, the execution times for any subset of the steps
can be reduced and the scheduling algorithm will also
feasibly execute this reduced-load problem.

An optimal preemptive priority schedule for a clas-
sical job shop (which is a special case of our repet-
itive job shop) is one that minimizes the maximum
completion time across all jobs (called the makespan).
As the following theorem shows, there may be prior-
ity assignments that achieve optimality but are not
anomaly-free with respect to execution time (which
we write as "anomaly-free w.r.t. execution time").
Theorem: An optimal work conserving preemptive
priority schedule may be anomalous w.r.t. execution
time.
Proof: Figure 1 shows on the left an optimal schedule

piiority S22 < Si2

Pi

P2

P3

S)i
4

r

Si3
1

S12 S;22:'
i L'

■S21 1

1

1

S" ^
i

Sl3

:

^^^.^ k

i

?22 S12
i

■..''■':v$2lr .::■.-'--^

timeline timeline

original schedule schedule with S21 reduced

Figure 1: Optimal but Anonomalous Preemptive Priority Schedule

for a two job problem. The schedule is obviously opti-
mal because the makespan is equal to the sum of the
step execution times of either job (i.e. the makespan
would not change even if either job were executed
alone with no contention at all). The schedule on
the right is obtained when the execution time for ^21
is reduced, but work-conserving preemptive priority
scheduling is applied with the same priority ordering
S22 -< 5i2. The makespan increases. Note the priority
ordering in the original solution was not a completion
time priority ordering. D

We say a scheduling algorithm is anomaly-free with
respect to release times if. for any feasibly sched-
uled problem, the intervals between the release times
of pairs of sequential jobs can be increased and the
scheduling algorithm will always feasibly execute this
reduced-load problem.
Theorem: There exists no scheduling algorithm that
is anomaly-free with respect to release times.
Proof: There exist problems that are feasibly sched-
uled but where increasing an inter-release time creates
an interval in which some processor would need to ex-
ecute at over 100% utilization to meet deadlines. Fig-
ure 2 shows such a problem. The original schedule was
feasible because release times permitted an efficient in-
terleaving of step executions, but shifting the release
of a step in the modified problem now overloads the
processor between two step release times and deadlines
regardless of how it is scheduled. □

6 Anomaly-Free Scheduling
Any preemptive priority schedule can be easily

modified so that it is anomaly-free by rearranging
priorities so they are in order of completion time.
This post-processing step can easily (and we suggest
should) be applied to any algorithm that searches for
optimal priority assignments but has not been guar-

anted to produce priorities in order of completion
times. The following theorem justifies this.

Theorem: For every feasible schedule, a work con-
serving earliest completion preemptive priority sched-
ule is anomaly-free w.r.t. execution times.

Proof: Construct the work-conserving earliest com-
pletion preemptive priority schedule for the origi-
nal problem (the one with worst-case step execution
times). For a step that completes earlier than origi-
nally specified, make the unused portion of the exe-
cution intervals in the original schedule into lazy in-
tervals, so that no other completion times change. By
a preceding theorem, these lazy intervals can be re-
moved to obtain a work-conserving earliest completion
preemptive priority schedule in which no step com-
pletes later than in the original schedule. D

We can eliminate the possibility of anomalies w.r.t.
release times by fixing them, which is what happens in
globally time-triggered systems. In traditional time-
triggered systems, a fixed global release time is as-
signed to every step, i.e. run-time traffic regulators
are used. We can relax this somewhat and still achieve
anomaly-free behavior. We can use a work-conserving
preemptive priority scheduler on every processor and
still be anomaly-free w.r.t. execution times, if we use
the following method for assigning priorities. Run-
time traffic regulation is no longer required, which
simplifies the implementation somewhat.

histead of an intermediate release time, we instead
assign an intermediate deadline to each step. The
deadline of the final step in a job equals the job dead-
line. These do not have to be checked or enforced
nt run-time, correct operation could be assured us-
ing off-line schedulability analysis. Priorities are then
cussigned in order of these deadlines. Note that if the
task shop is strictly periodic and repeats after some fi-

release release
I deadline I deadline

i I i ^
Sii

release
deadline

i
S12

S21 :W;S22::^:

1
release

deadline

i I
S11 S12

^ti^A^ S22 1

timeline

original schedule

Figure 2: Increased Inter-Release Time Makes Problem Unschedulable

timeline

unschedulable with release S12 increased

nite hyperperiod, then this can be accomplished using
an off-hne assignment of fixed priorities to each step
instance. Different steps within a task and different
instances of the same step might have different prior-
ities, so this priority assignment is closer to classical
earUest deadline first than classical preemptive fixed
priority scheduling. This is really a class of algorithms
because we do not specify a particular algorithm for
assigning intermediate deadlines, a subject to which
we return in the final section.

To see that this is anomaly-free w.r.t. execution
times, first consider the schedule obtained when ev-
ery step executes for its specified (worst-case) execu-
tion time. In every case where two steps are ready
at the same time, the step that completes first is the
step having earliest deadhne. That is, the priority as-
signment is consistent with completion times as well
as deadlines. By a preceding theorem, such preemp-
tive priority schedules are anomaly-free w.r.t. execu-
tion times.

We define an asynchronous scheduling model as
follows. For each task, define a minimum job inter-
release time and a deadline, where the deadline is
never greater than the inter-release time. The first
job of a task can arrive at any time, which becomes
its release time (unknown until the job arrives). Sub-
sequent jobs can arrive any time at or after the release
time of the preceding job plus the minimum inter-
release time. The deadline for a job occurs at a spec-
ified interval of time following the release time.

We define a class of scheduling algorithms for the
asynchronous model that is anomaly-free w.r.t. exe-
cution times as follows. When a job arrives at time
T, we assign intermediate deadlines to every step in
that job, where the deadline for the final step is the
job deadline. At each processor, use earliest deadline
first scheduling. Processor clocks need not be globally
synchronized to implement this algorithm, but we do

require that one processor be able to observe the lo-
cal clock of another (with bounded error) at certain
synchronization events. Given this capabihty, the in-
termediate release times and deadlines for the steps
of a job can be adjusted (with bounded error) by the
difference of the processor clocks as part of the inter-
mediate step release hand-shaking protocol.
Theorem: The preceding class of algorithms is
anomaly-free w.r.t. execution times. By this we mean,
if the algorithm produces a feasible schedule for all
possible allowed job release times, then it produces
a feasible schedule for all possible allowed job release
times when one or more execution times are reduced.
Proof: For each fixed pattern of job release times,
the pattern of deadlines is fixed. By the same rea-
soning as above, the completion times for this pattern
can only decrease after reductions in execution times.
Every individual pattern is thus anomaly-free, so the
schedule is anomaly-free for all possible patterns.

7 Future Work
We know the final class of algorithms discussed

cannot be anomaly-free w.r.t. release times because
completion times depend on the relative phasings of
job releases. A schedulability algorithm that bounds
worst-case response times for all possible phasings also
bounds the anomalies w.r.t. release times. We con-
jecture that the schedulability analysis algorithms of
Spuri can be used for this purpose [5]. We conjecture
the bounds on anomalies w.r.t. release times implied
by these algorithms also bound any anomalies w.r.t.
execution times.

The conjecture stated at the beginning of this pa-
per, that anomaly-free scheduling may contribute to
more robust and easily modified and verified sys-
tems, has intuitive appeal. Determinism is widely-
acknowledged to be highly desireable in safety-critical
systems, and adds theoretical complexity to demon-
strations of equivalence and compliance between for-

mal models. Totally determistic and anomaly-free be-
havior isn't, possible in distributed systems, but bene-
fits may accrue if these effects can be constrained. Our
conjecture is perhaps more pragmatic than theoretical
and needs to be assessed by experience.

Anomalous behaviors can result in changes in the
order in which the start and end of task executions
occur. Nondeterminism in event orderings may com-
plicate debugging and verification. A better formal-
ization and understanding of anomalous behavior with
respect to event order might be of use in problem areas
such as instrumentation, visualization, syncyhroniza-
tion and verification of distributed real-time systems.
For example, the results noted in this paper imply
that if a partial order is enforced on step deadlines,
then a corresponding partial order will apply to step
completion times.

If we try to compare the theoretical efficiency of a
globally time-triggered versus a globally asynchronous
solution, we need to be careful about the actual timing
requirements. For a sampled data system that period-
ically samples a continuous input signal, we are pre-
sumably free to pick the exact times of sampling and
output (as long as they are periodic). The scheduling
algorithm is free to slide these back and forth to inter-
leave different jobs efficiently in time. Figure 2 showed
an example that was unschedulable using the asyn-
chronous model but feasibly scheduled using a time-
triggered model. However, if the application requires
bounded response times to external real-world events,
then a time-triggered solution essentially polls the ex-
ternal environment, and any polling latency must be
added to the end-to-end latency of the time-triggered
model. Taking these factors into consideration, it is
an open question whether one approach is inherently
potentially more efficient than the other for this prob-
lem.

We have not discussed the problem of picking
good intermediate deadlines in time-triggered systems,
which is presumably as difficult (in both theory and
practice) as job shop scheduling. We have had some
success applying a kind of temporal load balancing to
fairly large problems abstracted from actual avionics
systems (e.g. thousands of tasks and messages hosted
on dozens of processors and busses). However, this
has not yet been not generalized to the problem model
presented here[l].

Our real-time task shop model assumes each job
is a linear sequence of steps. In practice, fan-in and
fan-out and feed-back control loops will appear. The
latter might be dealt with by breaking each loop and
imposing a suitable end-to-end deadline for the asso-
ciated internal state update, so that a solution for the
resulting acyclic graph might be sufficient for most
practical purposes.

We conjecture that global end-to-end scheduling al-
gorithms, such as earliest job deadline first, or global

least laxity (laxity computed using the sum of remain-
ing step execution time and the final job deadline),
are also anomalous. It is an interesting open question
whether an anomaly-free scheduling algorithm exists
that does not make use of either intermediate release
time or intermediate deadline assignments.

References
[1] Robert Allen, Dennis Cornhill, Bruce Lewis and

Steve Vestal, "Using an Architecture Description
Language for Quantitative Analysis of Real-Time
Systems," Third International Workshop on Soft-
ware Performance, Rome, Italy, July 2002.

[2] Bjorn Andersson and Jan Jonsson, Preemptive
Multiprocessor Schednling Anomalies, Chalmers
University of Technology Technical Report 01-9,
September 2001.

[3] R. L. Graham, "Bounds on Multiprocessing Tim-
ing Anomalies," SIAM Journal of Applied Math-
ematics, V17, n2, March 1969.

[4] J. R. Jackson, Scheduling a Production Line
to Minimize Maximum Tardiness, Research Re-
port 43, Management Sciences Research Project,
UCLA, 1955.

[5] Marco Spuri, Analysis of Deadline Scheduled
Real-Time Systems, Rapport de recherche n.
2772, Institut National de Recherche en Informa-
tique et en Automatique (INRIA), Rocquencourt,
France, January 1996.

[6] Jun Sun and Jane Liu, "Synchronization Proto-
cols in Distributed Real-Time Systems," Proceed-
ings of the 16'*> ICDS, 1996.

HIERARCHICAL COMPOSITION AND ABSTRACTION
IN ARCHITECTURE MODELS
Pam Binns and Steve Vestal
Honeywell Laboratories
Minneapolis, MN, USA
{pam.binns,steve.vestal] @lioneywell.com *

Abstract We present a compositional approach to generate linear hybrid automata timing
models, and Markovian stochastic automata safety models, from an architecture
specification. Formal models declared for components are composed to form
an overall model for the system, where the composition rules depend on the
semantics of the architecture specification. We further allow abstract models to
be specified for a subsystem of components, where the abstract model may be
substituted for the concrete model of that subsystem when composing the overall
system model. We assume both abstract and concrete models are given, we
address the problem of verifying that the abstractions yield safe if approximate
results. Ari abstract model may be viewed as a formal subsystem specification
used for both conformance checking and improving the tractability of system
analysis.

Keywords: architecture description language, formal specification, hybrid automata, stochas-
tic processes, schedulability modeling, reliability modeling, system safety

1. Introduction
Given a specification for the architecture of an embedded computer system,

we want to generate and analyze formal models of system behavior. In this
paper we discuss the generation and analysis of timing and safety models from
specifications written in the SAE standard Architecture Analysis and Design
Language (AADL) and its original research basis, MetaH[AADL 2004, MetaH
2000].

An architecture is often informally described as an assembly of connected
components. Overall system behavior is determined by the interactions be-
tween components according to the way they are connected, which is to say
system behavior is defined as acomposition of the behaviors of its components.
We will associate formal models with individual components in a specification.
The formal models for a complete system are defined as compositions of the

•This work was supported by the US Air Force Otlice of Scientific Research under conlraci number F49620-
97-C-0008.

individual component models. In this paper, we use a type of hybrid automaton
to specify real-time component behaviors, and a type of stochastic automaton
to specify component fault and error behaviors.

Architectures are specified hierarchically. Every component may have an
internal implementation that may itself be specified as a set of connected sub-
components. Given a component that has an internal architecture, a formal
model for that component can be generated by composing the models for its
subcomponents. We call this the concrete model for that component. We may
also directly associate an abstract model with a component that is intended to
be a safe approximation for the concrete model. When generating a system
model from an architecture specification, we thus have a choice for each com-
ponent whether to use its concrete model or its abstract model. A different
choice can be made for different components at different levels of the design
hierarchy, so that a fairly large set of mixed-fidelity models is possible. Hi-
erarchical abstraction can both improve understandability and enable tractable
analysis for large and complex specifications.

We assume both concrete and abstract models are given, e.g. hand-developed.
Our focus is on verifying that analyses performed when abstract subsystem
models are substituted for concrete subsystem models are safe in some sense
with respect to analyses of the fully detailed concrete models. In the case of
our timing models, we show how to verify that classical periodic tasks are con-
servative approximations for hybrid automata used in the AADL standard to
define thread semantics, or hybrid automata that model reusable middleware.
In the case of our safety models, we explore the relationship between abstract
and concrete stochastic automata models. We expect the effort required to
develop pairs of abstract and concrete models to be justified by high degrees
of reuse; and that many pairs of abstract and concrete models will be based
on common and easily modified design patterns. An abstract model may be
viewed as a formal specification that is also usable to improve the tractability
of analysis.

2. Related Work
We borrow one of the fundamental ideas of process algebra[Milner 1989]:

show that a large and complicated subsystem model can be replaced by a
smaller and simpler subsystem model when performing overall system anal-
ysis. We permit the smaller simpler model to be an approximate abstraction
rather than requiring some notion of equivalence. We deal with hybrid and
stochastic automata rather than purely discrete models. We use automata rather
than programming language models[Cousot 1977].

CHARON and Hybrid I/O Automata (HIOA) exhibit many of these con-
cepts[Alur et. al. 2001, Lynch et. al. 2003]. The notion of abstraction used
in this paper also involves containment of reachable states or traces. We allow

Abstract Compositional Architecture Models 3

looser definitions than the CHARON notion of refinement or the HIOA notion
of implementation, for example we allow the sets of abstract and concrete vari-
ables to differ. We allow fairly arbitrary abstractions to be specified and focus
on verifying that they are adequate for the purpose at hand. CHARON and
HIOA use more traditional ways to compose automata based on shared vari-
ables and/or shared events, whereas we use a scheduler function to compose
models of real-time tasks that interact by contending for shared processors.

Markov (and more general stochastic) processes are well known to exhibit
the state space explosion when trying to solve large models of complex sys-
tems. This served to motivate the desire to use more computationally tractable
abstractions. Early work established necessary and sufficient conditions for
when abstractions of Markov chains were again Markov [Kemeny and Snell
1976]. Considerable effort has beeii spent in developing efficient algorithms
to find tractable Markov abstractions {e.g. [Derisavi et al. 2003a]). Other re-
searchers have sought abstractions for which the solution is exact when the
concrete model is a semi-Markov processes, which is more expressive than a
Markov process [Bradley et al. 2003]. When a Markov process has no tractable
abstraction that is again Markov, techniques for finding approximate abstrac-
tions might be useful [Lefebvre 2002].

From a computer science perspective, process specifications typically be-
gin with models of concurrent automata, to which various stochastic semantics
have been applied. Considerable work has gone into linking conditions for
when variants of stochastic automata are analyzable as Markov chains (e.g
[Brinksma and Hermanns 2001, Deshamais et al. 2003]). Software tools have
been developed to support specification of numerous modeling formalisms and
abstractions coupled with a collection of optimized solution techniques for
evaluating them (e.g. [Derisavi et al. 2003b]).

3. Timing Models
Classical real-time scheduling theory deals with the scheduling and analysis

of repetitively dispatched tasks[Liu and Deitel 2000]. The time between dis-
patches is fixed (periodic tasks) or has a lower bound (sporadic tasks). There is
an upper bound on the compute time at each dispatch (often called the worst-
case execution time). The theory provides algorithms for optimal (in some
sense) uni-processor scheduling and for tractable schedulability analysis of
large sets of tasks. However, classical real-time scheduling theory deals with
only very restricted forms of internal task behaviors or interactions between
tasks (beyond contention for a shared processor resource). For example, tasks
in an actual system may exist in a number of discrete states, e.g. halted, initial-
izing, suspended, computing, recovering.

Hybrid automata can model more complex dynamical systems[Alur et. al.
1994]. A hybrid automaton is a classical finite state automaton plus a set of

real-valued variables. The variable values may change continuously in a fixed
location (a fixed discrete state), and may change discontinuously (may be as-
signed) at discrete transitions between locations. The allowed transitions may
depend on the variable values (edge guards may be predicates over variables).
These additional behaviors are specified by annotating the edges and locations
of the classical finite state automaton with various kinds of constraints. In this
paper we limit our attention to linear hybrid automata, where constraints are
expressed using linear functions. A state of a hybrid automaton consists of a
location together with a real value for each variable. We use polyhedron to
refer to a set of possible real values for the variables (e.g. specified as a system
of linear inequalities), and use region to refer to a location plus a polyhedron.
Composition rules exist to define semantics for sets of concurrent hybrid au-
tomata.

Figure 1. Concrete Hybrid Automata Model T for a MeiaH Periodic Task

Certain AADL thread semantics are defined in the standard using a hybrid
automata notation[AADL 2004]. We have automatically generated linear hy-
brid automata models for the portions of the MetaH middleware that perform
preemptive scheduling and enforce time partitioning[VestaI 2000]. Figure 1

Abstract Compositional Architecture Models 5

shows a hybrid automata model T for a periodic task. This model was automat-
ically generated from the MetaH middleware code, i.e. it shows task behavior
actually implemented by the middleware (excluding stopping and restarting
at dynamic architecture reconfigurations). We use 6x as an abbreviation for
Sx/6t. The choice for 5c = {0,1} is made as follows.

We do not use shared variables or shared edge labels (synchronized transi-
tions) to compose multiple automata. Instead, we use a scheduling function
that defines the rates at which compute times accumulate as a function of the
current set of task locations (e.g. as a function of which tasks are in ready
states)[Vestal 2000]. Let/ =< lii,l2j, - > be a location vector for a system
of automata, i.e. In is a location from automaton Ti, hj is a location from au-
tomaton T2, etc. A scheduler function < 5vi,5v2, — >= 'S'(< hi,hj, — >)
(also written 6v = S{1)) defines the variable rate vector as a function of the
system location vector. In our example, the scheduler function always sets
M = l for timers t, and sets 6ci = lif task i is executing and 6ci = 0\f task i
is preempted for that system location (for that set of contending ready tasks).

Unfortunately, analyzing schedulability by model-checking systems of hy-
brid automata is not currently very tractable. We have done this for pairs of
different kinds of tasks during the MetaH middleware verification exercise, but

. revolutionary advances in hybrid automata model-checking are needed to con-
sistently analyze even a dozen non-trivial concurrent task models. We instead
explore how to verify that a complex hybrid automaton task model (such as
one defined in the AADL standard) can be safely approximated by a classical
real-time task model for the purpose of schedulability analysis.

assert ('<200000

Awaiting_Dispalch
ec'=0, ai'=l
l'<200000

Figure 2. Abstract Hybrid Automata Model T' for a MetaH Periodic Task

Figure 2 shows an abstract hybrid automaton specification T for a periodic
task having a period of 200000 time units and a worst-case compute time of
100000 units. We assert this formally specifies a classical periodic real-time
task, slightly extended by the addition of a Failed state. We define a mapping
between this abstract automaton and the concrete automaton of Figure 1 as
follows.

We define a many-to-one mapping of concrete to abstract locations, / =
a{l) for abstract location I' and concrete location I. Every initial concrete lo-

cation must map to an initial abstract location. Our example mapping is il-
lustrated in Figure 1 using shaded ovals to represent the abstract locations to
which the concrete locations are mapped. We define the value of each abstract
variable as a linear function of the concrete variables, i\ = fi{vi,V2,...) for
each abstract variable t(and concrete variables Vj (also written v' = f{v)) .
For our example, if = t and c^ = c + r. Each initial valuation for the concrete
variables must map to an initial valuation for the abstract variables.

Assume we are given a system of abstract tasks 7^,..., Tl,... having an ab-
stract scheduler function Stf = S'{1'). We can view this as an abstract specifi-
cation for scheduling a system of tasks. We can modify this system by replac-
ing some particular 7^ with a concrete Tj, with suitable changes to the domain
and range of the scheduler function.

We constrain the modified scheduler function 5 obtained from the abstract
S' so that all concrete locations that map to the same abstract location are
equivalently scheduled, and concrete scheduler rates are consistent with ab-
stract scheduler rates. Assume that, due to the replacement of 2/ by Tj, abstract
variable v,' is removed from the range of S and concrete variables iji,... where
^i — /i(^ti> ■••) are added. For unreplaced abstract variables ifj, 6vj = S'(<
...,/',... >) = Sj{< ...,l,... >) whenever a(Z) = /'. For substituted vari-
ables, Svl = Si{<,!'.... >) = Sfiivn,...) with Svij = 5,-,(< ...,l,... >)
whenever a{l) = I'.

We assert that the original abstract system can be analyzed using a classical
schedulability analysis algorithm appropriate to the abstract scheduling func-
tion S'. If the reachable regions of the modified system are contained in those
of the original abstract system (after applying the variable abstraction function)
for all feasibly scheduled abstract systems, we assert that the abstract system is
a safe approximation for the modified system for the purpose of schedulability
analysis.

To formalize the notion of containment in the presence of variable abstrac-
tion, let P'^ be the system of linear inequalities obtained from an abstract
P' by substituting for each abstract variable t| its linear abstraction function
fiivi,V2,...). Only concrete variables appear in P^. We say that concrete P
is contained in abstract P' if P C P'i

We verify by model-checking that a modified S derived as explained above
from a feasible abstract scheduler ff will always feasibly schedule 7^. First, for
our example pair of abstract and concrete models we restrict our attention to
schedulers that are functionally equivalent to the set of constant rate schedulers
5'(...,Computingi. •••) ^ V^. i-C an abstract scheduling function is feasible
for this example if it allocates at least 50% of the processor to Tl between its
release time and deadline while Ij is in its compute state. Second, we construct
a specific S that satisfies the conditions above, one that sets Sc = 1/2 and 6r -
0 in all concrete slates that map to the abstract computing, except 6r = 1/2

Abstract Compositional Architecture Models 1

and 5c = 0 in the recovering state. For our MetaH example, both abstract and
concrete scheduler functions are preemptive fixed priority schedulers. (Note
that, as one might expect, a number of concrete schedulers could be defined
that satisfy the above conditions on the relation between abstract and concrete
scheduler functions.)

Using these abstract and concrete scheduler functions, we applied a region
enumeration tool to both an abstract and a concrete task model. Then, for
each reachable concrete region (Z, P) where I is a concrete location and P a
polyhedron in the concrete variable space, the tool verified that there was some
reachable abstract region (Z',P') such that I' = a{l) and P C P'K Note
this is a conservative containment test, sufficient but not necessary, because in
principle P might be contained in a union of abstract polyhedra but not in any
single abstract polyhedron.

The condition that S is indistinguishable from 3 for all concrete locations
that map to the same abstract location means the scheduling of a given task
model is the same regardless of whether it is being composed with abstract
or with concrete models. We can thus make this substitution for any arbitrary
subset of tasks to produce mixed-fidelity models that range from all abstract to
all concrete.

This worked for our example concrete MetaH task model by design, in the
sense that the task scheduling implementation was designed to present a clas-
sical real-time workload. This enabled accurate schedulabilify analysis for
implemented systems, at least to the degree we could verify the implementa-
tion satisfied the abstraction (subsequent hybrid system model generation and
checking revealed some implementation defects [Vestal 2000]). The advent of
hybrid automata methods (largely occuring after the original MetaH design)
and abstraction methods (such as those presented here) can hopefully enable
more rigorous and defect-free development in the future.

Abstraction methods such as that presented here might be used to produce
mixed-fidelity hybrid automata models that are more tractable to model-check.
Our earlier experience suggests that expanding only two or three out of a dozen
abstract tasks into their fully detailed concrete models might yield a tractably
analyzeable model[Vestal 2000]. This might be useful, for example, to verify
some complex interaction protocol between a pair of tasks.

Our use of model-checking to verify containment of concrete behavior within
abstract behavior required us to constrain the class of abstract and concrete
schedulers and the mapping between them. It would be useful to verify that
the abstraction is a safe approximation for the concrete for broad classes of ab-
stract and concrete schedulers and mappings. For example, it might be possible
to permit a (mapped) concrete scheduler rate to exceed the abstract rate under
certain circumstances. This might make it easier to deal with things like differ-
ent scheduling priorities for different concrete locations, or bounded blocking

8

times, which would be of significant practical utility. It might also be pos-
sible to prove more complex cases of containment using an explicit detailed
abstraction mapping between concrete and abstract invariants and edges (in-
cluding guards and assignments), rather than model-checking with constrained
scheduler functions.

4. Safety Models
We now revisit the same general problem addressed in the previous section,

but rather for safety models than for timing models. The AADL Error Mod-
eling Annex defines language features to specify stochastic models for fault,
error and failure behaviors in embedded computer architectures[AADL 2004].
A stochastic automaton approach is used[Brinksma and Hermanns 2001] for
specification. The rules for composing individual component stochastic au-
tomata depend on the specified architectural structure, i.e. depend on the pos-
sible error propagation paths between components that interface to or depend
on each other. Propagation modifiers can be specified to make propagation
conditional, which allows consensus and voting protocols to be modeled.

An error model for a system specified as a nested hierarchy of components
can be obtained by composing the error models for its subcomponents accord-
ing to the rules of the language. However, another option is made available:
the user can specify a subsystem error model that may optionally be substituted
as an abstraction for the concrete compositional model. Propagation modifiers
can also map one error into another. This makes it easier to compose legacy
models or models developed at different levels of abstraction. (Legality rules
are included in the annex to enable automatic verification of error model com-
patibility within an overall architecture specification, or identify places where
such mappings are needed.)

The remainder of this section is organized as follows. We introduce Markov
processes, the modeling language to which stochastic automata specifications
are translated before solving the system. We suggest rules to preserve safety
properties when going from concrete (larger) steady state Markov models to
abstract (smaller) steady state stochastic models. Abstractions of several steady
state Markov models are presented. Steady state analyses are computationally
much simpler to find than transient analyses.

We show that the transition rate assignment in the abstract model is uniquely
determined by the transition rates of the concrete model when the abstraction
is "lumpable". When the abstraction is not lumpable, rate assignments in an
abstract model need not be uniquely determined. We discuss selection criteria
for "reasonable" assignments from an engineering perspective when possibly
infinite (beyond a constant rescaling of all transition rates) assignments will
satisfy the constraints of the abstract model. For safety analyses, transient
solutions are generally required. We discuss conditions for preserving safety

Abstract Compositional Architecture Models

in transient models. We close with an illustration of how Markov chains are
composed at the (AADL) specification level.
4.1 Brief Markov Process Introduction

The reader is assumed to be familiar with Continuous Time Markov Chains
(CTMCs) at an introductory text level (e.g. [Hoel et. al. 1972]). We use stan-
dard notation for describing CTMCs, which unfortunately has some overlap
with hybrid systems notation. Hopefully the context will make clear the use.
The notation we use to specify and solve CTMCs is compactly defined in Ta-

Description

A finite discrete set of systen states. Typically, 5 = {1, 2,..., m}.
Elements in S. x,y & S.
System state at time t>O.X{t)eS for all t > 0.
Instantaneous rate of change from state x to y for x / y. The set {qxy } de-
scribes the infinitesimal generators of the CTMC. For x = y, QXX — -QX —
-J2 ;_/ \ Qxy In practice, qxy is known or must be approximated {e.g. the
failure rate of a component, perhaps given by a vendor specification).
The infinitesimal generator matrix. Denote (A)ij = qij.
The transition rate out of state .T. For a CTMC, this means the probability that
a process in state x will remain in state x for a time greater than t is e~'' . If x
is a death state (with no transitions leaving x), then QX = 0.
A diagonal matrix, with Dxx = Qx and Dxy = 0 for x^ y.
The probability of transition from state x directly to state y given the system is
about to transition out of x ^ y. Qxy = qxy/qx for x / j/.
The probability that X{t) = y given that X{0) = x. Or, the probability that a
process X in state x will be in state y after t time has elapsed.
The steady state distribution. That is TT = (7ri,7r2,TTm), where TVX =
lim(_ooP(A'(t) = x). For a CTMC, TT satisfies 7rA = 0. For a Discrete
Time MC (DTMC), TT satisfies -nQ = n. Also require ^^j TTJ = 1, to fully
constrain the model.

Table I. Continuous Time Markov Chain (CTMC) Notation

ble 1. When considering limiting distributions, we assume there are no death
states and the limiting distribution does not depend on the initial distribution.
That is, we assume the CTMC is ergodic and regular.
4.2 Examples of Concrete Continuous Time Markov Chain Models

We give three Markov models used in subsequent examples. Models are
concrete when no further detail is captured in any of the states or transitions.

The model shown in Figure 3 is the simplest possible Markov process that
can represent a single repairable component (SRC). The right hand side shows
standard notation. The left hand side is an equivalent, yet more compact rep-
resentation that we adopt. In Figure 3, 6 - {1,2}. When in the operational
state (1), faults occur at rate A, when the process transitions to the failed state
(2). The failed system returns to operational when the repair event has been

10

effected, which occurs at rate /i. When repairs are not instantaneous, the repair
completion time is equated with the repair event epoch. Table 2 summarizes

cjy^'^CD =

Figure 3. Failure/Repair Transition Notation and SRC Model

these transitions and gives the steady state distribution.

X e (5 (x,y) 9x1 9iy TTi

1
2

(1,2)
(2:1)

-A

-M
A
A*

^•(Ai + A)-'
A(M + A)-'

Table 2. Single Repairable Component Markov Process Specification

For our second example, we consider an abstraction that aggregates a se-
quence of events, which may be desirable in practice. Figure 4 show a process
consisting of a sequence of four events reduced to three events.

Figure 4. Markov Cycle Models (Right abstracts Left)

The last example is a triple modular redundancy (TMR) system with three
independent and identical components, Q, C2, and C3. Components are either
working or failed, with failure and repair rates A and //, respectively. System
state is defined by the state of all components, with "operational" states as two
or more components are working. Figure 5 and Table 3 show the TMR Markov
process, parameters, and steady state solution.
4.3 Safe Abstractions of Concrete Models

Superscripts a and c are used to distinguish between abstract and concrete
models. For example S° and S''- denote abstract and concrete states, respec-
tively. To ensure safety properties, we propose two rules for defining abstract
models in terms of concrete models.

(1) To ensure that concrete states are not split and distributed among multi-
ple abstract states, we recommend that the concrete states are partitioned where

Abstract Compositional Architecture Models 11

i 'I

Figure 5. Markov TMR Model

op comps state X gx up? TTi Abs 1 Abs 2
{1,2,3} 1 -3A yes t^'-in + x)-^ pa. P"'
{1,2}
{2,3}
{1,3}

2
3
4

-(2A + //)
-(2A + //)
-(2A + M)

yes
yes
yes

ifi'X)-{tM + X)-'
{^l^x) ■ (/z + A)-^
(M^A)-(/. + A)-^

Pa"'

{1}
{2}
{3}

5
6
7

-(A+ 2/.)
-(A+ 2/.)
-(A + 2,x)

no
no
no

(/.A^)-(M + A)-^
(MA^)-(,. + A)-3

(MA=')-(M + A)-^

Pa"' P2"''

0 8 -3M no A^-{/. + A)- P4'"'

7afc/e .1 TMR Markov process specification for Figure 5

each partition corresponds to a single abstract state. When ^ = {1", 2",.... m"}
then a partition on S'^ — \J^i Pf is defined so that j" = {x\x G Pj} and
j° n i" = 0 for j" 7^ i°. For a "safe" steady state abstraction, assign probabil-
ities to the abstract states by:

For X eS°', assign TT" = Y1'"'P '^^^ere j e P^nS'^.

When error states are aggregated in an abstraction, this assignment ensures that
the probability of the error in the abstraction is not reduced.

12

This state aggregation (or partitioning) rule is consistent with the abstraction
model of heirarchical decompositions. It is also intuitive when system states
correspond to the (discrete) operational condition of physical components. For
dependent faults an abstraction that "splits probabilities" across states might
result in a better approximation. Further investigation is needed to determine if
this heirarchical decomposition rule eliminates a number of useful abstractions.

(2) We further suggest that a one step transition from x G (P to y € 5°,
q^y > 0 only if there exists some 3/ e P^ C 6'^ and some 1/ e Py C 6'^ such
that q^,y, > 0. This preserves a notional mapping from the abstract model to
the system through the established mapping from the concrete model to the
system. More importantly, it implies that errors in the abstract model cannot
propagate in ways that were not specified in the concrete model.
4.4 Transition Rate Assignments for Safe Abstractions

We give three examples of safe steady state probability assignments for ab-
stractions using the two step process in Section 4.3. We investigate the rela-
tionship between safe probabilities and rate assignments.

The right side of Figure 4 shows an abstraction of a four cycle model which
merely collapses two states into one. Equation 1 gives the steady state solution
of the concrete cyclic model in Figure 4.

TT'^ = C7rf TTS TTS TT?) = (A|A^A;,AfAgA;,A;A|AS,AfA|A^) ..
n {T^l,Tr2'^3>T^4) — A|A|A5+Af A^A^+Af A^AJ+Af A|Ag ^^'

For the reduced model on the right of Figure 4, a similar computation gives
TT" = (7rf2,7r3.7r4) in terms of transition rates A12, A3 and A4. A solution that
preserves exiting transition rates in non-aggregated states of A° is

Ai2 = (^fAi)(Af-f-A^)-i; Af-A^: and AJ - A^. (2)

The solution in Equation 2 is not unique (four concrete parameters define three
abstract parameters).

For the TMR example of Figure 5 we consider two abstractions. The two
right most columns of Table 3 define the abstraction partitions. Abstraction
1, which defines abstract states by the number of operational components is
shown in Figure 6. Section 4.5 shows this is a lumpable abstraction with unique

Figure 6. Number of Operational Components TMR Abstraction

(relative to the concrete model) transition rates, and how to compute them.
A courser abstraction of the TMR model is simply the two state model,

5" = {1;2} = {up,down}. This abstraction is shown with shading in Fig-
ure 5 and also in the right most column of Table 3. When approximated by a

Abstract Compositional Architecture Models ' 3

Markov process, this abstraction is represented in Figure 3. Equation 3 is the
result of equating the two formulations for TI", which does not have a unique
assignment. The abstract model parameters must sastisfy

A7,i« = (AV/i'^)' • (A-^ + 3/.^)/(3A<= + M') (3)

In general, partitioned (abstract) processes are not Markovian, in which case
the rate assignment need not be uniquely determined. The question is which
assignment of values produces the best results from an engineering perspec-
tive. Is it preferable to hold constant the flow in, the flow out, the ratio of the
flow in to the flow out, or some other property? One can envision practical
circumstances which would favor each of these decisions.
4.5 Lumpability, Safe Abstractions and Rate Assignments

We define necessary and sufficient conditions for when the partitioned ab-
straction is again Markovian. Our discussion of strong lumpability forDTMCs
follows the presentation in [Kemeny and Snell 1976].

Consider a partition P on 5 with k < m elements. Define Uk,m and Vm.k
according to P as follows. The /'' row of U puts a probability distribution
on the elements in Pj. For example, if Pj contains hj states over which the
uniform distribution is to be placed, then

_ / 1/6, for s e Pj (4)
otherwise ^3.s - I 0

The rows of a matrix V define the partition to which the state belongs. I.e.

V ■ = [^ forsGP,- (5)
*'^ \ 0 otherwise

Theorem 1 gives conditions for strong lumpability with respect to partition
P of a Discrete Time Markov Chain (DTMC).

THEOREM 1 (DTMC STRONG LUMPABILITY) Let P be a partition for
the DTMC with state space 5 and transition matrix Q. Let U and V be matrices
defined by Equations 4 and 5 with respect to P. The DTMC is said to be
strongly lumpable with respect to P if and only if

VUQV = QV.

For a proof see Theorems 6.3.4 and 6.3.5 of [Kemeny and Snell 1976].

Theorem 2 is an easily obtained analog for conditions of strong lumpability
in a Continuous Time Markov Chain (CTMC).

THEOREM 2 (CTMC STRONG LUMPABILITY) Let P be a partition for
the CTMC with finite state space 6 and infinitesimal generator matrix A. Let
U and V be matrices defined by Equations 4 and 5 with respect to P. The
CTMC is said to be strongly lumpable with respect to P if

14

VUD-'^AV = D-^AV

where D = -diag{A). That is, D is a diagonal matrix with [D)ii = -{A)ii.
To show this result, note that the DTMC transition matrix Q = LT'^A^- I.

An application of Theorem 1 gives

VU{D-'^A + I)V = (D-M + I)V.

Since UV = I, the result follows.

The rates for the abstract model are found by computing A" - UAW. An
algorithm for finding the coursest (i.e. the most abstract) strongly lumpable
mode! is given in [Derisavi et al. 2003a]. This algorithm has computational
complexity 0{\Q^\ ■ log2(|i5^|)) and space 0{\Q^\ + \6^\), where |g<=| is the
number of positive transitions in the concrete model.

Weak lumpability occurs when the lumped process is Markov when starting
from some (but not all) initial distributions ([Kemeny and Snell 1976]). Work
has been done linking both strong and weak lumpability MP results to the same
properties in stochastic automata(e.g. [Brinksma and Hermanns 2001]).

Investigation as to whether lumpable partitions create natural ahd useful
abstractions for system models is needed. When an abstraction is not lumpable,
a measure of "near lumpability" has been proposed as a measure of the quality
of the approximation.
4.6 Time Dependent or Transient Solutions

For a time dependent analysis, we define safety for an abstract model with
partition P as follows. Let x G Pj C 5^ be a non-fault or safe set of states and
y G Pf C S'^bea "fault occurence" set of states. The abstraction is said to be
safe in the time interval [0, T]

Pso(X°(0 = r) > P^{X{t) ePf)^xePs and Vt e [0,T]. (6)

In words, we require for all t G [0,T] that when starting in safe abstract state
s°, the probability of reaching abstract fault state f is at least as great as the
probability of reaching any state in partition Pj when starting from in any state
in partition Pg in the concrete model.

When the concrete Markov process is started in steady state Tf, then for ev-
ery time f > 0 and for all x € 6", the P-n{X{t) = x) = TT:,. When the abstrac-
tion is strongly lumpable (hence Markovian), the requirements of Equation 6
are satisfied because probabilities sum within partitions and the distribution of
time to transition from all states in a partition to another partition is the same.

We are not sufficiently familiar with the literature to be able to report whether
a transition assignment that can satisfy the requirements of Equation 6 exists
for an arbitrary complex fault model with a non-lumpable abstraction. Perhaps
an equally important question is how those conditions might be applicable for
guiding the development of practical fault models.

> '

Abstract Compositional Architecture Models 15

propagator receiver

Figure 7. Error Propagation Between Markov Models

4.7 Composing Concurrent Models
Figure 7 illustrates the basic idea behind composing multiple Markov chain

component models, one Markov Chain per component. The user may distin-
guish selected states as error propagating states, which is modeled as a self-
transition with a given error propagation rate. For an error that may propagate
from one component to another (determined by the architecture specification),
the rate of a transition in the receiving model is determined by the rate of the
propagating transition rather than a rate specified in the receiving model. A
fundamental result of stochastic process algebras is that, under suitable restric-
tions, such rendezvous between concurrent stochastic processes have Poisson
rates. Once this rate has been determined it can be used for the rate within the
receiving model, and the methods of the preceeding sections applied to verify
an abstraction. Similarly, self-transitions can be added to an abstract model to
define propagation rates to be used in other receiving models.

The AADL Error Model Annex includes a way to define guards on error
transitions to model things like voting and consensus protocols. In other words,
additional language features and semantics are included to compactly spec-
ify complex event propagation conditions. More research is needed to deter-
mine when high level abstractions are closely approximated by the generated
Markov abstractions.

5. Future Work
We have given only two examples of techniques that can be used to demon-

strate that an abstract model can safetly (in some sense) be substituted for
a more complex concrete model when generating hybrid and stochastic au-
tomata models from architecture specifications. Preliminary approaches for
linking MetaH/AADL safety specifications with concrete and abstract Markov
models with solvers have been reported [Binns et al. 2000]. A more complete
toolbox is needed. Also, more complex notions of abstraction may be useful,
for example conformance relations[Krichen and Tripakis 2004].

16

References
[AADL 2004] SAE AS5506, Architecture Analysis and Design Language, Society of Automo-

tive Engineers, Warrendale, PA, 2004.
[MeiaH 2000] MetaH User's Guide, Honeywell Technology Center, 3660 Technology Drive,

Minneapolis, MN, uww.htc.honeywell .com/metah.
[Aluret. al.2001] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I.

Lee, R. Mishra, G. Pappas and O. Sokolsky, "Hierarchical Hybrid Modeling of Embedded
Systems," EMSOFT 2001, Springer Verlag LNCS 2211, 2001.

[Aluret. al. 1994] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, R.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis and S. Yovine, "The Algorithmic Analysis of Hybrid Sys-
tems," International Conference on Analysis and Optimization of Discrete Event Systems.
LNCIS 199, Springer-Verlag, 1994.

[Binns et al. 2000] P. Binns, S. Vestal, W. Sanders, J. Doyle, and D. Deavours, "MetaH/Mobius
Integration Report", Customer Report for DARPA's Evolutionary Design of Complex Sys-
tems (EDCS) Program, Honeywell Labs, April 2000.

(Bradley et al. 2003] Jeremy Bradley, Nicholas Dingle, and William Knottenbelt, International
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), July 2003

[Brinksma and Hermanns 2001] Ed Brinksma and Holger Hermanns, "Process Algebra and
Markov Chains," Springer LNCS 2090, European Educational Forum: School on Formal
Methods and Performance Analysis, 2001.

[Cousot 1977] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints," Sixth Annual
Symposium on Principles of Programming Languages, Los Angeles, California, 1977.

[Derisavi et al. 2003a] S. Derisavi, H. Hermanns, and W. H. Sanders, "Optimal State-Space
Lumping in Markov Chains," Information Processing Letters, vol. 87, no. 6, September
30, 2003,

[Derisavi et al. 2003b] S. Derisavi, P. Kemper, W. Sanders, and T. Courtney, Performance Eval-
uation, Volume 54(2), October 2003

[Desharnais et al. 2003] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panagaden, "Metrics
for Labelled Markov Processes," to appear Tlworetical Computer Science, Elsevier

[Hoel et. al. 1972] Paul G. Hoel, Sidney C. Port, and Charles J. Stone, Introduction to Stochas-
tic Processes, Houghton Mifflin Company, USA, 1972.

[Kemeny and Snell 1976] John G. Kemeny and J. Laurie Snell, Finite Markov Chains.
Springer-Verlag, 1976.

[Krichen and Tripakis 2004] Moez Krichen and Stavros Tripakis, "Black-box Conformance
Testing for Real-Time Systems," SPIN'04 Workshop on Model Checking Software, LNCS
2989, 2004.

[Lefebvre 2002] Yannick Lefebvre, "Approximate aggregation and applications to reliability."
Third International Conference on Mathematical Methods on Reliability (MMR). 2002

[Liu and Deitel 2000] J. Liu and P. Deitel, Real-Time Systems, Prentice-Hall, New Jersey, 2000

[Lynch et. al. 2003] Nancy Lynch, Roberto Segala and Frits Vaandrager, "Hybrid I/O Au-
tomata," Technical Report MIT-LCS-TR-827d, MIT Laboratory for Computer Science,
Cambridge, MA, Jan. 13, 2003; and Information and Computation, 185(1). Aug. 2003

[Milner 1989] Robin Milner, Communication and Concurrency, Prentice Hall, UK, 1989
[Vestal 2000a] Steve Vestal, "Formal Verification of the MetaH Executive Using Linear Hybrid

Automata," Real-Time Applications Symposium, June 2000.
[Vestal 2000] Steve Vestal, "Modeling and Verification of Real-Time Software Using Extended

Linear Hybrid Automata," NASA Langley Formal Methods Workshop, June 2000.

t>RAFT OF 18 AUGUST 2004

Real-Time Sampled Signal Flows through
Asynchronous Distributed Systems

Steve Vestal

Abstract- We present a new model of real-time periodic
distributed asynchronous computation in which information
flows through sequences of periodic tasks, where task inputs are
obtained by sampling other task's outputs as well as sampling the
environment. We introduce a metric for end-to-end timing called
the age of an output, which is the time since the external inputs
on which an output value is based were sampled. We present
some bounds on age scheduling efficiency, reduce the problem of
finding a feasible distributed age schedule to finding a solution
for a system of nonlinear constraints, and discuss use of a
commercial solver to find a solution to a large problem derived
from a real-world system.

Index Terms- real-time, asynchronous, distributed systems

1. INTRODUCTION

Many large distributed control systems are built by
plugging together components that operate periodically using
their own internal clocks. For example, a sensor periodically
samples the environment, a bus periodically conveys data
from the sensor to a processor, the processor periodically
executes tasks that operate on sensor data. If all these
components operate using separate and unsynchronized
clocks, then we could say that the bus periodically samples the
sensor and the processor periodically samples the bus,
analogous to the way the sensor periodically samples the
environment. We present a model for this kind of distributed
asynchronous system, one in which sampling may occur at
internal asynchronous interfaces between components.

Perhaps the most widely-used metric for end-to-end timing
in distributed system is latency, which is the time between the
arrival of an external data value and the time at which the
corresponding output value arrives at its final destination.
However, this metric does not work well for our model for at
least three reasons. First, while it is reasonably clear what
latency means for a linear sequence of precedence-constrained
tasks, it is not as clear what latency means for less restricted
connectivity graphs in which an output may be computed from
multiple inputs. Second, this metric applies to each data
value, which passes in a loss-less manner from task to task. In

This work was supported by Honeywell and the US Air Force Office of
Scientific Research under contract F49620-0I-C-0024. Steve Vestal is with
Honeywell Laboratories, Minneapolis, MN 55418 USA (e-mail:
Steve.Vestal® Honeywell.com)

our model, values may be lost internally, for example due to
under-sampling of a data flow that goes from a high-rate to a
low-rate task. Third, it is not additive in the sense that end-to-
end latency is not the sum of the latencies through each task.
We present a new metric called the age of an output value.
Intuitively, the (worst-case) age of an output value is the
(worst-case) time since the external input values on which that
output is based were sampled.

An age scheduler selects task sampling periods as well as
decides which among a set of ready tasks is executing on each
processor. For uni-processor age scheduling, we derive
bounds on achievable age utilization, and on the ratio of
classical to aged utilization. For multi-processor age
scheduling, we formulate the problem of selecting a set of
good periods for each processor as a non-linear constraint
satisfaction problem. We also bound the efficiency of an
asynchronous sampling system relative to an idealized fast
uni-processor. Finally, we describe the use of a commercial
non-linear optimization tool to solve a problem derived from a
large real-world avionics system.

II. PREVIOUS WORK

Most work on end-to-end timing in real-time systems
models a task as a linear sequence of subtasks [1,3,4]. The
first subtask in a sequence is released according to some
temporal constraint (e.g. periodic, minimum inter-arrival time,
arrival curve). Each subsequent subtask in the sequence is
released when its predecessor finishes. The end-to-end
latency for each task is defined to be the time between the
release of the first subtask and the completion of the last
subtask in that sequence. The worst-case end-to-end latency
for that task is the largest such value for all releases of that
task.

We present a different model for distributed asynchronous
systems that, to our knowledge, does not appear in the
literature. We restrict our attention to tasks having periodic
release times. In our model, every subtask has its own
periodic release, each subtask samples its predecessors. Each
subtask is its own independent sampled data system, sampling
all its inputs and using a zero-order hold for all its outputs. In
the standard model, there is no loss of data between subtasks
in a fault-free system. In this model, data may be lost due to
under-sampling by one subtask of its predecessor subtask's
outputs. In this model, we are not restricted to linear
sequences of subtasks, the flow of data between subtasks can

DRAFT OF 18 AUGUST 2004 ^2 V

be an arbitrary directed graph.
Both the standard and our model are similar in the

assumption that subtasks have a fixed allocation to processors.
The allocation problem, and the scheduling and schedulability
analysis problem, are handled separately.

III. ASYNCHRONOUS SAMPLING SYSTEMS

We first introduce our model and terminology for a periodic
task hosted on a single processor, illustrated in Figure 1. A
processor is a piece of hardware able to execute periodic
tasks. A task hosted on a processor is periodically dispatched,
where the dispatches are exactly Ttime units apart. A task can
access input and output ports associated with its hosting
processor. Following each dispatch, the processor will sample
input ports and perform work for that task, scheduled in a
manner chosen for the processor. When C units of work are
completed following a dispatch, the task writes output values
into output ports. The time between the dispatch and the
writing of the output value is called the latency L. Note that
latency is defined relative to the dispatch instant, not the times
at which inputs are sampled.

We use processors and tasks to abstractly model several kinds
of hardware resources and activities. Thus, a processor may
model a computer, or a switch, or a bus or network link. A
task may model a software computation or a message
transmission.

We assume that T is the same between every dispatch, but that
C and L may vary. Note that our definition allows inputs to be
sampled and outputs to be written at different offsets from the
dispatch for different dispatches (i.e. our model admits jitter).
Unless specifically stated, we use C and L to denote the worst-
case (supremum) work and latency for all dispatches, where L
denotes the worst-case latency for any output of a task. We
assume 0 < C < T and C < Z,, but not necessarily L<T.

We think of reading an input port as sampling a continuous
input signal, and writing an output port as setting the value of
a continuous zero-order hold output signal. The intervals of
time between successive samplings of an input and between
successive settings of an output, although T on average, may
vary somewhat due to the way a processor is scheduled.

A system has a set 0 = {p^, p^ ,.../7,v„ } of N^ processors

and a set T = {r|,r2,...r^,^ } of A'v,, tasks'. We use T^to

denote the subset of tasks hosted by processor p, where we
assume a static assignment or binding of tasks to processors in
this paper.

A system, illustrated in Figure 2, has a set

O = {^1, ^, ,—<t>N<,} 0^ ^c ^ows. A flow ^ is a cycle-free

ordered sequence of tasks "^ i\','^ AI,—T ^^ of length A^,.

The first task in the sequence samples a designated input port,
the last task in the sequence writes a designated output port,
and each intermediate task samples an output of its
predecessor and writes to an input of its successor. We use

T^ to denote the subset of tasks in flow^. Note that a task

may appear in multiple flows. The set of flows is a specified
subset of the paths in an arbitrary task graph between pairs of
input and output ports (which need not be external ports).

We assume that every task is included in at least one specified
system flow. However, we do not assume that a specification
includes all possible flows in a system. Rather, we assume
that the developer specifies a tractable set of flows that
capture the timing requirements of the system.

' Throughout we use lower-case Greek letters lo denote intuitively defined
abstract entities such as processors and tasks, upper-case Greek letters to
denote sets of such abstract entities, lower-case Roman letters to denote
indices for elements of sets, and upper-case Roman letters to denote real-
valued parameters of the models

S?IAFT OF 18 AUGUST 2004

processor

input
port

output
port

. T -

^— c-
timeline

I i
sample output sample
Fig. 1. Model and notation for a single periodic sampled-data task hosted on a single processor..

output

The interconnect topology between processor ports, the set of
ports accessed by each task, and the hosting specifications
HP , have some well-formed-ness constraints based on the

specified flows. However, it is not necessary for the purposes
of this paper to formalize these fairly intuitive constraints.

A fundamental assumption of our model is that processors
operate asynchronously with respect to each other. Given any
pair of tasks on different processors, we make no assumptions
about the relative phase or offset of their dispatches, and our
analyses cover all possible phasing. The scheduler on each
processor may, however, control the phasings between the
tasks hosted on that processor. As we will see, this can affect
the end-tb-end timing of flows.

IV. FLOW AGE

We now turn to the question of specifying system timing
requirements. It turns out that defining a natural notion of
end-to-end latency is not straight-forward. For example, the
latency of the system is not the sum of the latencies along a
flow. To see this, imagine a flow where all tasks have very
small latencies but one of the tasks has a very large period.

From a feed-back control perspective, both sampling period
and latency are important, but we would like a metric that
does not assign a special role to the period of the first (or last)
task in a flow.

We introduce a new timing metric that we call the flow age.
The age of a flow is the amount of time by which the output
signal is oiit-of-date with respect to the input sample used to
compute that output. The exact value of the age is a function
of time. The age steps to some value when an output is
written, then increases with time until the next output value is
written. The worst-case age is the largest age that occurs at
any point in time. We assume every output is initialized to
some specified value at time 0, so that the initial age of an
output equals the time since the system began operation until
the first write is made to that output. We codify these concepts
in the following results.

Lemma 1: The worst-case age of a flow that consists of a
single task r, that samples an external input is 7] + Z-,.

Proof: We first walk through the timeline of events
assuming no variability in any of the parameters, illustrated in

Fig. 2. Data flows through a system of asynchronous periodic sampling tasks and processors.

DRAFT OF 18 AUGUST 2004 .4^

Figure 3. At the moment the input signal is sampled, the age
of that sample value is zero. If this sampling occurs at the
dispatch instant (the earliest time possible), then the age of the

output signal becomes £, at the moment the output value is

written by the task. The age of this output continues to
increase until the moment at which the next dispatch
completes and writes a new output value (which has a smaller
age). The time between successive completions of the task is
7], so the worst-case age achieved of the output signal is

7:+i,.

Looking at figure 3, if a sample is taken later than the dispatch
instant, the effect is to shift the line showing the age for that
sample to the right. This can only decrease the age of the
output based on that sample. If the latency is less than the
worst-case, so that an output is written earlier, this only moves
a step-down of the dotted worst-case age function to the left.
Thus, the result still holds in the face of allowed variability in
sampling and completion times. §

Theorem 1: The worst-case age for a flow^ is the sum of the

worst-case ages of each per-task flow, ^^(7, -t-1,) .

Proof: Assume the (worst-case) age of the input signal to task
r, is y4,_, at the instant that input is sampled. At the instant

the output value based on this sample is written, its (worst-
case) age is Aj_^ + L.. The age of the output value continues

to increase until it is overwritten by a subsequent value, which
occurs 7) time units later. The result follows by observing

that OQ = 0 (the age of a value obtained by sampling the

external input signal is always 0 at the instant of sampling)
and induction on the number of tasks (every task just adds
7^ + Z,, to the worst-case time elapsed since the original

external input sample). §

It is fairly easy to see that the smallest possible age is V' Z,
/e>f.

Suppose the system is operating in such a way that the end-to-
end age of a flow is arbitrarily close to this minimum, which
will occur when the output of each task occurs arbitrarily
close to the input of its successor. If the latency of all such
tasks now increases very slightly, so the outputs occurs just
after the inputs of the successor tasks, the flow suddenly goes
from the least possible to the greatest possible end-to-end age.
Such systems can in principle exhibit very high jitter and very
rapid changes between small and large end-to-end age.

V. UNI-PROCESSOR AGE SCHEDULING

The traditional real-time periodic uni-processor scheduling
problem has as inputs, for each periodic task r^, a specified

period 7]; a specified upper bound C^ on the maximum

compute time needed for any dispatch; and a specified upper
bound on the allowed worst-case latency (often called the
deadline Z),). The age scheduling problem uses the worst-

case task age A^ as an input parameter, where the scheduler is

free to trade-off period and latency as long as their sum
remains less than the specified worst-case age.

We first explore the relationships of this problem to the
traditional definition of uni-processor utilization,

/Lml 'T>

An important concept in traditional theory is that of the
utilization bound for a particular scheduling algorithm. Given
a particular scheduling algorithm 5 applied to a given class of

real-time scheduling problems, the utilization bound (/*. is

that utilization below which a feasible schedule is guaranteed.

age of output
for sample #1 age of output

for sample #2

L. + T.

t-^.-' ! t t I
sample #1 output #1 sample #2 output #2 sample #3 output #3

Fig 3. Age ot'an output as a function of time.

#R>?FT OF 18 AUGUST 2004

That is, if (7 < t/5 (where U is computed as above for the

given problem) then that problem will be feasibly schedulable
using algorithm 5. The utilization bound can be used both to
compare the efficiency of two scheduling algorithms, and as a
simple test to see if a given problem can be feasibly scheduled
by a given algorithm. However, we note that all known
utilization bounds are inexact for arbitrary deadlines, in the
sense there exist schedulable problems whose utilization is

above the utilization bound. U < U^ is sufficient but not

necessary to guarantee schedulability.

However, for age scheduling we cannot compute the
traditional utilization from the problem statement, since the
task periods 7^ are determined by the scheduling algorithm.

We thus explore some properties of an analogue value that we
call the aged utilization,

u -^■ > =y-

Lemma 2: Let C/j be the utilization bound for scheduling

algorithm S for the traditional implicit deadline scheduling
problem (7] = D^, the deadline for task completion is the

next dispatch of that task). Then 5 with T^ = A^ /2 solves

the age scheduling problem with an aged utilization bound of

C/^/2 (i.e. any age scheduling problem where U^ ^Uljl

will be feasibly scheduled by 5 with T. = A., /2).

Proof: The traditional implicit deadline requirement means
L < 7)., hence 7]. + i, < 27^., hence it follows from

T^ = 4/2 that T, + I, < 4. Substituting T^ = A^fl into

the formula that defines traditional utilization gives
U^ = Uj2, hence the aged utilization when the traditional

utilization achieves [/*• is V^jl.^

Theorem 2: There exist algorithms to solve any age
scheduling problem having an aged utilization no greater than
50%, and there exist age scheduling problems that cannot be
feasibly scheduled by any algorithm when the aged utilization
is greater than 50%.

Proof: To show the first part, we note that scheduling
algorithms with a traditional utilization bound of 100% are
known (e.g. earliest deadline, least laxity, harmonic rate
monotonic). The preceding lemma shows that these can be
applied to solve an age scheduling problem as long as the
aged utilization is no greater than 50%.

To show the second part, consider the problem having a single
task r, where C, = Aj2 . It is always the case i,. > C, for

any possible task set and scheduling algorithm, and the only
feasible schedule for this problem dispatches the task with
r, = C,, which has 100% traditional utilization and 50%

aged utilization. §

These results show how a scheduling algorithm for the
traditional periodic task problem where deadlines equal
periods (called implicit deadlines) can be used to solve the age
scheduling problem. We will call this age scheduling by
reduction to some traditional algorithm, e.g. age scheduling by
reduction to rate monotonic scheduling, age scheduling by
reduction to earliest deadline first scheduling.

The preceding results emphasize that the traditional and aged
utilizations are different metrics that can both be computed for
an age scheduling problem. The traditional utilization will in
general vary depending on the scheduling algorithm, while the
aged utilization is strictly a function of the problem
specification. We now show that the aged utilization metric is
always less than 100% even for the best possible schedule.

Defn: A perfect age schedule is one in which Z,, = C, for all

tasks.

A perfect schedule provides the smallest latencies that could

age of output
for sample #1

age of output
for sample #2

L. + T,

\
output
signal

4 A A A f

sample #1 'output #1 sample #2 output #2 sample #3 output #3

Fig. 3. Age of an output as a function of time.

DRAFT OF 18 AUGUST 2004

possibly exist. Figure 4 shows an example of a perfect age
schedule, one achieving a traditional utilization of 1 for a
problem having an aged utilization of 2/3 . (This figure also

illustrates a nice visualization of the age, which is the interval
of time between a dispatch of a task and the completion of the
following dispatch.) A perfect age schedule has the following
properties (which we state without proof).

A perfect age schedule is preemption-free and jitter-free.
A perfect age schedule may have non-zero phasing or
offset between different tasks (i.e. offsets are decided by
the scheduling algorithm).
A perfect age schedule achieves the least possible ratio
UjU A of traditional to aged utilization among all
possible schedules for a given problem.

We now bound the value of (/^ relative to V for perfect
schedules, which bounds the aged utilization that could be
achieved by any possible age scheduling algorithm. This will
provide something analogous to the impossible-to-exceed
limit on traditional utilization, [/ < 1 for all possible feasible
schedules. We first state two simple lemmas, then an
approximate bounding theorem.

c r, cY c ^
Lemma 3: — = 1 -)

T I T) T + C

Proof: Divide both sides by | 1 -I- — |, you end up with

C
T + C

on both sides. §

Lemma 4: If 2_]-V, = U , then ^xf is minimal when
(=1." /=l..n

X = U/n , and the minimal value is U^/n .

Proof: The author has it on good authority that this is obvious
to anyone familiar with Lagrange multipliers[2]. §

Theorem 3: For a perfect age schedule of M tasks,

n n
Proof: The proof is by algebraic manipulation of the formula
for VIV^ for a perfect schedule.

E'^r IJ_

Using the lemma 3 above, this can be rewritten as

T -I- C. r+c •j _u_

With a few more simple manipulations, this can be written in
the form

u.=u

We now resort to an inexact approximation to bound the true
result, using the fact that C/T > C/(T + C) ,

Using lemma 4 above, we can rewrite this as

<U,<U-^/

Applying the quadratic formula to the right-hand side allows
us to plot bounds on the maximum possible U^ for any given
U. Figure 5 shows this approximation for U=l, which defines
a region in which the maximum possible U^ (the t/^ of a
perfect schedule for a problem having the most benign
possible set of compute times) lies. Note that the most benign
possible set of compute times are those for which all tasks
have identical task utilization (i.e. a perfectly balanced

■4 -/(,=3- —►

'l - 2

C = l C: c,
C,=I c, c,

T, - 2
'

A, =3 ''

a perfeci schedule timeline

Fig 4 Example of a perfect age schedule

' SkA'FT OF 18 AUGUST 2004

workload).

Theorem 4: There exist feasibly schedulable problems for
which no feasible perfect schedule exists (i.e. preemption
and/or jitter may be necessary to feasibly schedule some
workloads).

Proof: The system of two tasks r,,r2with^,=5, C;=2,

/!,= 10, Cj=2 has no feasible non-preemptive age schedule. A

feasible schedule must fit two executions of T, into an interval

of length 5 (the age is the interval between a dispatch of a task
and the subsequent completion of the next dispatch), so any
remaining idle intervals can have length at most 1. A
preemptive fixed priority schedule, where r, has priority

over r^, T[=3 and ^2=6, and the dispatches are offset by 2, is

feasible and has U=l and [7^=3/5=60%. §

What this theorem says is that the previous aged utilization
ratio is still overly optimistic for determining an absolute not-
to-exceed aged utili2ation bound for the general age
scheduling problem. It is a bound that can be achieved by an
algorithm only for particular age scheduling problems, those
for which a feasible perfect schedule exists.

VI. MULTI-PROCESSOR AGE SCHEDULING

The distributed age scheduling algorithms we consider take as
input sets of flows, flow age constraints, and task compute
times; and outputs an age constraint for every task along every
flow. We formulate this as a constraint satisfaction problem
in the following way.

We showed earlier that each flow age is the sum of the task
ages along that flow. We also showed that each processor has
an associated scheduling algorithm and aged utilization bound
that we can use to assess schedulability. We thus have a set of
constraints of the form

for each flow ^, '^A, < A^

for each processor p, 2_j—'~-^f

The distributed age scheduling problem is to find a set of task

ages A that satisfy (at least) these constraints. In a later

section we discuss a sample problem solved using an existing
solver.

We now turn to the question of whether there is any inherent
inefficiency in using a distributed asynchronous architecture
versus a centralized synchronous one. Specifically, we
evaluate a choice between n slower distributed processors
versus a single central processor that is n times faster. Which
choice can handle the larger workload while still meeting
deadlines? For example, a flow through three perfectly
scheduled asynchronous tasks, each having a compute time of
1 and a period of 2, has a worst-case age of 9 and loads the
system to Vi capacity (assuming a classical breakdown
utilization of I). But a single processor that is 3 times faster
can achieve the same worst-case age with a period of 8 and
loads the processor to only 1/8 capacity. To try and shed
insight on the general question, we now present a relationship
between the distributed system utilization and the fast uni-
processor utilization.

For a given flow (|) through a set ^^ of distinct tasks on
distinct processors, consider the equation

JeH'..

The left-hand side is the sum of the utilizations on all the
processors, which is the total utilization Us of the distributed
system (which may be greater than 1). The right-hand side
can be recognized as the total work performed divided by the
end-to-end flow age. This is the aged utilization for an
idealized uni-processor that, to an external observer, does the
same work with the same age. The factor E is the relative
efficiency of the distributed to the uni-processor system. We

Region for Best Possible Aged Ulilization When U = 1

-r

5 6

number of tasks

Fig. 5. Bounding region lor best possible aged utilization when traditional utilization equals one..

DRAFT OF 18 AUGUST 2004 ^'tV

now derive bounds on the ratio of these two values (bounds
on the value off) when the distributed system is scheduled as
efficiently as possible (in the sense of minimum possible
system utilization Us).

Lemma 5: For a single flow ^ the distributed system
utilization

lef.

is minimized when

for ally, k.

A] " A]

Proof: The lemma says that the sum of the individual
processor utilizations is minimized when the derivatives of the
individual processor utilization curves are equal. Figure 5,
which shows the aged utilization curve as a function of the
age for an individual processor, may be helpful.

Suppose the lemma were not true, and the sum was minimal
when the derivatives with respect to the ages

a^'. d^i"

were greater on processory and smaller on processor /. Then a
slight decrease in Ajznd an equally slight increase in ^j would
preserve the same end-to-end age while slightly reducing the
sum of the utilizations, a contradiction. §

Lemma 6: For any list of n non-negative values Xi..x„.

1< /

Z(--)^
<n

(the ratio of the square of the sums to the sum of the squares
never exceeds the number of values). The maximum value is
achieved when X. = Xj (all the x values are identical). The

minimum value is achieved when all but one x

asymptotically approach zero.

Proof: We can use lemma 4 to show this, letting

2_,Xi =(/and ^x,' =^ / ■ The ratio is maximized
1=1 ." /=! ..n

when the denominator is minimized. Lemma 4 and a little
algebraic manipulation show the maximum ratio is n, and that
this is achieved when x. = Xj . For the minimum ratio, we

note that a list of« numbers can always become dominated by
a single value, where all but one of the values (say, A;)

asymptotically approach 0. In this case the ratio approaches

xl/xl=\.§

Theorem 5: For a single flow (j), if for ally and k

^; A',
then

EC, EC,
/eT c.

le'V. le'V.

Proof: It is fairly easy to see that

/eS' c
Z C, '^"^^ A^

Zc.
/£%

E4
le^j

meaning the efficiency factor is

Q

Ai

Fig. 5. Aged ulilization as a function of aee.

E = ,!/■ c
S C '^"^^ A^

/eT.

We show by algebraic manipulation that E<n. We rewrite the

right-hand sum using]J[A, as the common denominator,

^A,

ic,
\

ViA,

which, using slightly different notation can be written

I I k*l

zc,n^,
We combine the sums in the numerator and separate out one
age from each term in the denominator, we can rewrite this as

IS^FT OF 18 AUGUST 2004

We now make a substitution easily derived from the premise

ofthe theorem, letting C, ={cjAf}Af Jin ZC.riA •

This leads to the following reductions

k*l

/ k*l

={c,M^)z^-nA

(k

If we apply this substitution to the previous equation, we get

l[cAnA^ [[cj A^)[[AXYA,A,

ZA,

We recognize this as the ratio ofthe square ofthe sum to the
sum ofthe squares, which by lemma 5 is never less than 1 or

greater than IT^I (the length of flow (j), the number of distinct

processors that host the flow). §

As noted in lemma 5, the minimum ratio above is achieved
when all but a single A, asymptotically approach zero. This

occurs when the corresponding C/values are asymptotically
small. Thisis the case where the distributed flow
asymptotically approaches a single processor workload
anyway.

The maximum ratio is achieved when all the A, values are

equal, which occurs when the corresponding C, values are
equal, and in which case the utilizations on all the distributed
processors are equal. With equal utilizations, and a single
resource age scheduling algorithm having an aged breakdown

utilization ofA'^, the distributed system is feasible providing

rtrA, '
We assume the virtual centralized processor is n times faster
than any single distributed processor, so that the centralized
compute times take the form C, /« . We assume an equally

efficient single resource age scheduling algorithm is used.
Then the virtual centralized processor is feasible providing

I

Theorem 5 tells us that the left-hand-side ofthe first inequality
above can be as much as n times greater than the left-hand-
side ofthe second inequality. In some sense, then, centralized
synchronous scheduling can be as much as n times more
efficient than asynchronous distributed scheduling for a single
flow. The greatest discrepancy in efficiency occurs when the
flow computation is evenly distributed across the distributed
asynchronous system.

These observations are based on an analysis of a single flow.
However, we note theorem 5 is independent ofthe
utilizations, it is true of a flow that loads each processor very
lightly as well as a flow that loads each processor to the
breakdown utilization. This implies the distributed and
centralized processor utilizations for multiple flows would
sum independently, which suggests this result holds for
muhiple flows as well.

VII. AN EXAMPLE

An important practical question is whether a usefully large
problem can be tractably solved using available methods for
finding solutions to the system of non-linear constraints
shown at the beginning of section V. To assess this, we used
data derived from a planned avionics system to produce and
solve such a system of constraints.

The core ofthe hardware architecture consisted of two
computing clusters. Each cluster contained a high-speed time
division multiple access bus, 4 central processors, and 2
external bus interface modules. Each external bus interface
module connected to 4 low-speed time division multiple
access busses, each of which connected to between 2 and 4
I/O processors. Each I/O processor connected to a large
number of external devices (sensors and actuators).

The software architecture consisted of 40 dual-redundant
software applications, each containing between 2 and 4
periodic tasks. There was also a software task to manage each
external device, hosted on the connected I/O processor. The
software architecture consisted of a total of 1472 periodic
tasks and 2644 flows between external devices and application
tasks.

Before generating the model, we merged all tasks that were
bound to the same I/O processor and executed at the same rate
into a single task. We merged (multiplexed) every set of
flows that had common source and destination processors,
destination tasks with identical periods, and identical routing
through the hardware resources. This reduced the totals to
210 tasks and 610 flows.

In formulating the system of non-linear constraints that
describe feasible system schedules, we must select a set of
flows whose end-to-end age is to be constrained. In practice.

DRAFT OF 18 AUGUST 2004 rc*y-' ■'-

this will be derived by the developers based on individual
application timing requirements. The only values available to
us, however, were the sampling rates of the application tasks
hosted on the central processors We used three times this
value as our maximum allowed end-to-end age between
external device and application function.

Each bus was treated as a hardware processor, and external
bus interface modules were ignored. Thus, a flow consisted
of a periodic task on an I/O processor, a periodic task on a
low-speed bus, a periodic task on a high-speed bus, and a
periodic task on a central processor, with an end-to-end age
constraint equal to three times the specified sampling rate of
the task on the central processor.

The resulting multi-processor age scheduling problem had
1425 variables and 1872 constraints. We assumed a
maximum (breakdown) aged utilization of 80% for processors
and 50% for busses. We automatically generated an AMPL
model from a specification of this architecture written in (a
preliminary version of) the SAE standard Avionics
Architecture Description Language (AADL). AMPL expects
a goal function to be optimized, we minimized the sum of the
maximum processor aged utilization and maximum bus aged
utilization.

This model was solved in about 45 seconds using CONOPT.
The final solution had maximum processor aged utilizations of
about 63% and maximum bus aged utilizations of about 43%.

VIIl. SUMMARY AND FUTURE WORK

Age, as we have defined it here, has intuitive appeal as a
metric for specifying end-to-end timing constraints in
distributed asynchronous systems. However, we need to
determine if this metric has a useful meaning for control or
signal processing engineers. The approach to sampled data
systems that is presented in introductory texts is to assume an
algorithm is specified as a set of difference equations that are
evaluated periodically and instantaneously. Under these
assumptions, a transfer function for the sampled data
subsystem can be derived. Shannon's sampling theorem can be
used to relate the sampling rate to the frequency spectrum of
the signal, etc. Additional work is needed to see how the
concept of age (as defined here) manifests itself within the
signal processing and control engineering domains, e.g. can a
transfer function be derived when the end-to-end controller
timing behavior is specified as a worst-case age (as defined
here)?

The largest and smallest ages can vary significantly, which is
to say an end-to-end flow may experience significant end-to-
end jitter. Moreover, this may be fairiy unstable in the sense
the actual end-to-end latency may change a lot over a very
short interval of time. This aspect of end-to-end timing
behavior is worth further investigation.

We carried out some preliminary investigations into
relationships between age scheduling and traditional real-time

periodic scheduling and analysis. A similar investigation
could be undertaken with respect to real-time switched
network scheduling and analysis.

Improved uni-processor age scheduling algorithms certainly
remain to be discovered. Each such algorithm should have an
associated aged utilization bound that can be used during the
distributed scheduling phase. The more precise the aged
utilization bound, the more efficient the distributed scheduling
solution will be. Such bounds may be made more precise by
taking into account the compute times for the tasks hosted on
a processor.

A near-term pragmatic problem is further work on age
scheduling by reduction to legacy scheduling algorithms. For
example, quantization of task periods needs further
investigation. Methods to obtain estimated aged utilization
bounds that are sufficiently precise to enable reasonably
efficient distributed scheduling are needed. Note that these do
not necessarily need to be analytic bounds, since the
individual processor analytic methods can be used to verify
the final solution to a high level of assurance.

ACKNOWLEDGMENTS

The author would like to thank Larry Stickler, Denis Foo
Kune and Ted Bonk for helping create the AADL architecture
specification; and Nitin Lamba for his help with AMPL and
CONOPT.

REFERENCES

111 Jean-Yves Le Boudec and Patrick Thiran. The Kerwork Calculus.
hiav//ical\v\v-\v.epf1.clv'PS filcs/NciCal.lilm

\2] Daniel Johnson and Mike Elgersma, personal communication.
Honeywell Labs, 2003.

[3) Jun Sun and Jane Liu, "Synchronization Protocols in Distributed Real-
Time Systems," Proceedings of the 16"' International Conference on
Distributed Computer Systems, 1996.

HI K. Tendell and J. Clark, "Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems," Microprocessors and
Microprogramming 40, 1994. .

